首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bioactive surfaces with appropriate hydrophilicity for protein immobilization can be achieved by hydrophobin II (HFBI) self-assembly on mica and polydimethylsiloxane (PDMS) surfaces. X-ray photoelectron spectroscopy and water contact angle measurements illustrated that the surface wettability can be changed from superhydrophobic (PDMS) or superhydrophilic (mica) to moderately hydrophilic, which is suitable for protein (chicken IgG) immobilization on both substrate surfaces. The results suggest that HFBI assembly, one kind of hydrophobin from Trichoderma reesei, may be a versatile and convenient method for the immobilization of biomolecules on diverse substrates, which may have potential applications in biosensors, immunoassays, and microfluidic networks.  相似文献   

2.
Forced or spontaneous wetting of a solid surface in an isothermal case is governed by an outer flow and by wetting properties of the substrate. These properties are determined by the substrate wettability and morphology. Wetting and subsequent or simultaneous icing of surfaces are mutually influenced also by the microscopic processes associated with phase change in the vicinity of the contact angle and in the outer region. In this review, the physical phenomena influencing the wetting and icing of substrates and the latest developments in this field are reviewed.  相似文献   

3.
Most research of responsive surfaces mainly focus on the wettability transition on different solid substrate surfaces, but the dynamic properties of the micro/nanostructure-enhanced responsive wettability on microscale pore arrays are lacking and still remain a challenge. Here we report the photocontrollable water permeation on micro/nanoscale hierarchical structured ZnO-coated stainless steel mesh films. Especially, for aligned ZnO nanorod array-coated stainless steel mesh film, the film shows good water permeability under irradiation, while it is impermeable to water after dark storage. A detailed investigation indicates that the special nanostructure and the appropriate size of the microscale mesh pores play a crucial role in the excellent controllability over water permeation. The excellent controllability of water permeation on this film is promising in various important applications such as filtration, microreactor, and micro/nano fluidic devices. This work may provide interesting insight into the design of novel functional devices that are relevant to surface wettability.  相似文献   

4.
The patterning of liquid thin films on solid surfaces is very important in various fields of science and engineering related to surfaces and interfaces. A method of nanometer-scale patterning of a molecularly thin liquid film on a silicon substrate using the lyophobicity of the oxide nanostructures has recently been reported (Fukuzawa, K.; Deguchi, T.; Kawamura, J.; Mitsuya, Y.; Muramatsu, T.; Zhang, H. Appl. Phys. Lett. 2005, 87, 203108). However, the origin of the lyophobicity of the nanostructure with a height of around 1 nm, which was fabricated by probe oxidation, has not yet been clarified. In the present study, the change in thickness of the liquid film on mesa-shaped nanostructures and the wettability for the various combinations of the thickness of the liquid films and the height of ridge-shaped nanostructures were investigated. These revealed that lyophobicity is caused by a lowering of the intermolecular interaction between the liquid and silicon surfaces by the nanostructure and enables the patterning of a liquid film along it. The tendency of the wettability for a given liquid film and nanostructure size can be predicted by estimating the contributions of the intermolecular interaction and capillary pressure. In this method, the height of the nanostructure can control the wettability. These results can provide a novel method of nanoscale patterning of liquid thin films, which will be very useful in creating new functional surfaces.  相似文献   

5.
Various aspects of native and model biological membrane wettability are discussed. Among others hydration of mono-, bi-, and multi-layers of lipids as well as wettability of macroscopic surfaces of solid supported lipid films was investigated via apparent contact angle measurements and calculation of the apparent surface free energy of the films. The effects of relative humidity on the layer hydration and contact angle changes are also discussed. Finally, the effect of liposomes and enzymes (due to the hydrolysis reactions) on the hydrophobic/hydrophilic character of the film surfaces is overviewed.  相似文献   

6.
The photoluminescence of CdSe/ZnS quantum dots (QDs) in different configurations at solid surfaces (glass, silicon, PDMS, and metals) is considered for three types of organization: QDs directly adsorbed on solid surfaces, separated from the solid surface by a nanoscale polymer film with different thickness, and encapsulated into a polymer film. The complete suppression of photoluminescence for QDs on conductive metal surfaces (copper, gold) indicated a strong quenching effect. The temporal variation of the photoluminescent intensity on other substrates (glass, silicon, and PDMS) can be tuned by placing the nanoscale (3-50 nm) LbL polymer film between QDs and the substrate. The photooxidation and photobleaching processes of QD nanoparticles in the vicinity of the solid surface can be tuned by proper selection of the substrate and the dielectric nanoscale polymer film placed between the substrate and QDs. Moreover, the encapsulation of QD nanoparticles into the polymer film resulted in a dramatic initial increase in the photoemission intensity due to the accelerated photooxidation process. The phenomenon of enhanced photoemission of QDs encapsulated into the ultrathin polymer film provides not only the opportunity for making flexible, ultrathin, QD-containing polymer films, transferable to any microfabricated substrate, but also improved light emitting properties.  相似文献   

7.
The surface activity of two hydrophobin proteins, HFBII and SC3, at the solid–liquid, liquid–liquid and liquid–vapor interface has been investigated. Hydrophobins are fungal proteins that are known to adsorb and affect the physico-chemical properties of an interface. In this study, the surface activity was determined by measuring the interaction of hydrophobin molecules with various liquids, solid particles and films that are commonly used or produced in industrial processes. We found that a very low concentration of hydrophobin is required to facilitate the wet-in of hydrophobic solid particles, such as Teflon®, into aqueous solutions. It is also capable of stabilizing aqueous dispersions of Kevlar® nanopulp, reversing the wettability of hydrophobic films and stabilizing polyunsaturated fatty acid (PUFA) oil-in-water emulsions.  相似文献   

8.
Hydrophobins are a type of small amphipathic proteins with a unique self-assembly property, which can be used to modify material surfaces and adsorb enzymes, antibodies and even cells. In this study, a fusion protein consisting of hydrophobin HGFI and green fluorescent protein(GFP) was successfully obtained from Pichia patoris (P. pastoris). Water contact angle(WCA) measurement proves that the wettability of the surfaces of different materials was changed. We further demonstrated the self-assembly ability of HGFI-GFP, which can be used to disperse the multi-walled carbon nanotubes(MWCNTs). Finally, the adsorption of HGFI-GFP onto the surface of the tissue engineering material poly(ε-caprolactone)(PCL) was evaluated by detecting the fluorescence of the fusion protein itself. The resalt demonstrates that both the basic self-assembly activity of the HGFI domain and the functional activity of the GFP domain were still remained.  相似文献   

9.
Surface wettability conversion with hydrophobins is important for its applications in biodevices. In this work, the application of a type I hydrophobin HGFI in surface wettability conversion on mica, glass, and poly(dimethylsiloxane) (PDMS) was investigated. X-ray photoelectron spectroscopy (XPS) and water-contact-angle (WCA) measurements indicated that HGFI modification could efficiently change the surface wettability. Data also showed that self-assembled HGFI had better stability than type II hydrophobin HFBI. Protein patterning and the following immunoassay illustrated that surface modification with HGFI should be a feasible strategy for biosensor device fabrication. Figure A hydrophobin HGFI has been applied into surface wettability conversion for protein immobilization Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
Hydrophobicity, lubrication and anticorrosion properties of steel substrates have been obtained by a deposition of thin film (i.e. by mechanochemical treatment) at room conditions. Stearic acid and paraffin were chosen as reactive molecules. Different abrasive powders were selected to generate active sites on the treated surfaces for adsorption of the reactive molecules and then, the results were compared. The surfaces were analyzed by reflection-absorption infrared spectroscopy (RAIRS). The results emphasize that, a thick layer of mixed stearic acid/paraffin was deposited onto the metallic surface after the treatment. After hexane rinsing we could only detect a very thin layer of oriented stearic acid molecules chemically adsorbed onto the metallic surface and which engages strong interactions with it. Whereas, RAIRS only provides molecular analysis, the XPS technique was complementary for discriminating the different surfaces. It was possible to show differences in thickness as well as in coverage according to the size and shape of abrasive particles. Furthermore, we could conclude that deposit layer is not uniform. Defects were always present and were dependent on abrasive powders used. Then wettability was assessed as a way to test the homogeneity of thin films generated by the mechanochemical treatment. In agreement with theoretical data, receding contact angle was very dependent on the defects in the deposited film. If holes or aggregates were increased in the deposit layer, the receding contact angle was decreased while advancing contact angles and equilibrium contact angles remained constant. A very important point for technological applications was that the homogeneity of the deposited film was governed by abrasive powder involved in mechanochemical treatment and contact angle values were a direct measurement of the homogeneity of surfaces generated by mechanochemical treatment.  相似文献   

11.
The structure and properties of photoreactive polyacrylamide thin films suitable for medical devices are presented. Using a solution deposition process, we report on the influences of polymer concentration, substrate residence time in solution and UV illumination upon the film structure, wettability and frictional properties. Ellipsometry, atomic force microscopy and lateral force microscopy show that increasing polymer concentration and illumination increased the film thickness and uniformity. Dynamic contact angles and frictional coefficients of the modified surfaces depend upon the film structure and thickness for films less than 40Å thick. We also demonstrate the potential of lateral force microscopy for investigating tribology at the nanoscale level.  相似文献   

12.
In this work, the effect of atmospheric-pressure plasma treatments on surface properties of polyimide film are investigated in terms of X-ray photoelectron spectroscopy (XPS), contact angles, and atomic force microscopy (AFM). The adhesion characteristics of the film are also studied in the peel strengths of polyimide/copper film. As experimental results, the polyimide surfaces treated by plasma lead to an increase of oxygen-containing functional groups or the polar component of the surface free energy, resulting in improving the adhesion characteristics of the polyimide/copper foil. Also, the roughness of the film surfaces, confirmed by AFM observation, is largely increased. These results can be explained by the fact that the atmospheric-pressure plasma treatment of polyimide surface yields several oxygen complexes in hydrophobic surfaces, which can play an important role in increasing the surface polarity, wettability, and the adhesion characteristics of the polyimide/copper system.  相似文献   

13.
Surface properties of polymeric devices that are used to regenerate nervous damage are a point to be considered for axon regeneration in nerve system. In our previous studies, we prepared a wettability gradient on polyethylene (PE) surfaces using a corona discharge treatment from a knife-type electrode whose power increases gradually along the sample length. The PE surfaces were oxidized gradually with increasing power. The effect of surface wettability on the different types of cells has an important role for cell adhesion and proliferation. The purpose of this study is to investigate neurite formation on polymer surfaces with different wettability. Induction and growth of neurites from the rat pheochromocytoma (PC-12) cells attached on the polymer surfaces with different hydrophilicity were investigated using the wettability gradient PE surfaces prepared by a corona discharge treatment. Neurites were investigated for number and length of neurites in terms of surface wettability. It was observed that neurite formation of PC-12 cells was increased more onto the positions with moderate hydrophilicity of the wettability gradient surface than onto the more hydrophobic or hydrophilic positions. From those results, it could be assumed that initial adhesion of PC-12 cells was caused by more calf serum (CS) protein than nerve growth factor (NGF), whereas the neurite formation of PC-12 cells was caused by more NGF than CS protein. It follows from what has been said thus far that PC-12 cells are a differentiated neuronal phenotype with a long neurite at around the position 2.5 cm (water contact angle of about 55 deg). In conclusion, surface wettability plays an important role for neurite formation on the polymer surfaces for axon regeneration.  相似文献   

14.
In this article, we described a method for the formation of photochromic polymer brushes grafted from oxide surfaces using surface-initiated ring-opening metathesis polymerization of spiropyran-based monomers in the presence of second generation Grubbs catalyst. The growth of the polymer film, as monitored by ellipsometry and atomic force microscopy (AFM), is strongly influenced by the initial concentrations of the catalyst and monomer, as well as reaction time. These densely packed and highly smooth polymer films were successfully used as surfaces with switchable color and wettability using light as the external stimulus. The relatively nonpolar spiropyran can be switched to a polar, zwitterionic merocyanine isomer (with a larger dipole moment) using light of the appropriate wavelength. This process is reversible and can be switched back using visible light. The spiropyran-merocyanine photoinduced isomerization gives a reversible contact angle change up to 15 degrees for smooth Si/SiO 2 substrate under sequential irradiation cycles with UV and visible light. This contact angle change can be amplified by complexing the merocyanine form with metal ions through the phenolate oxygen, which enhances the switching of wettability with these polymer brushes. Irradiation in the presence of cobalt(II) ions gives rise to a contact angle variation as high as 35 degrees . This is the largest change in photoinduced surface wettability observed for a flat substrate. Photoisomerization in spiropyrans also yields a change in the refractive index of the film, which we have investigated using ellipsometric imaging. Lastly, morphological changes accompanying photochromism were investigated using atomic force microscopy. Significant morphological changes can only be induced in the films by irradiating in polar solvents that help to stabilize the merocyanine ring open form.  相似文献   

15.
Fingering instabilities are observed at the contact line of drops of surfactant solutions spreading spontaneously on solid surfaces coated by a film of solvent. The occurrences of instabilities, and the characteristics of the instability pattern, are controlled by the surfactant concentration and the thickness of the film adsorbed or deposited on the substrate. This work provides experimental data as a basis for forthcoming theoretical analyses.  相似文献   

16.
含二氮杂萘酮结构聚醚砜酮膜的微波等离子体处理研究   总被引:4,自引:0,他引:4  
含二氮杂萘酮结构型聚醚砜酮(PPESK)是近年来本研究组开发成功的新型耐高温聚合物[1].该聚合物具有优异的力学性能和突出的耐热性,玻璃化转变温度(Tg)为265~305℃(随砜酮比不同而变化),其结构式如下:ONNOSOOONNOCO  研究表明,用PPESK制成的气体分离膜对O2/N2、CO2/N2有良好的气体渗透性和透过选择性[2,3],但由于其亲水性不高进而限制了它在纳滤膜和反渗透膜等方面的应用,因此有必要对其进行改性.目前,常用的膜及膜材料改性的方法有磺化、氯甲基化季胺化、接枝等化学改性和低温等离子体与辐射等物理改性.其…  相似文献   

17.
18.
We have investigated the self-assembling properties of the class I hydrophobin Vmh2 isolated from the fungus Pleurotus ostreatus. Five different hydrophobin self assembled samples including monolayers, bilayers, and rodlets have been prepared by Langmuir technique and studied at the nanoscale. Local wettability and visco-elasticity of the different hydrophobins samples were obtained from atomic force spectroscopy experiments in dynamic mode performed at different, controlled relative humidity (RH) values. It was found that hydrophobins assembled either in rodlets or in bilayer films, display similar hydropathicity and viscoelasticity in contrast to the case of monolayers, whose hydropathicity and viscoelasticity depend on the adopted preparation method (Langmuir-Blodgett or Langmuir-Schaeffer). The comparison with monolayers properties evidences a rearrangement of the bilayers adsorbed onto solid substrates. It is shown that this rearrangement leads to the formation of a stable hydrophobic film, and that the rodlets structure consists in fragments of restructured proteins bilayers. Our results support the hypothesis that the observed variations in the viscoelastic properties could be ascribed to the localization of the large flexible loop, typical of Class I hydrophobins which appears free at the air interface for LB monolayers but not for the other samples. These findings should now serve future developments and applications of hydrophobin films beyond the archetypal monolayer.  相似文献   

19.
Dynamics of dewetting at the nanoscale using molecular dynamics   总被引:2,自引:0,他引:2  
Large-scale molecular dynamics simulations are used to model the dewetting of solid surfaces by partially wetting thin liquid films. Two levels of solid-liquid interaction are considered that give rise to large equilibrium contact angles. The initial length and thickness of the films are varied over a wide range at the nanoscale. Spontaneous dewetting is initiated by removing a band of molecules either from each end of the film or from its center. As observed experimentally and in previous simulations, the films recede at an initially constant speed, creating a growing rim of liquid with a constant receding dynamic contact angle. Consistent with the current understanding of wetting dynamics, film recession is faster on the more poorly wetted surface to an extent that cannot be explained solely by the increase in the surface tension driving force. In addition, the rates of recession of the thinnest films are found to increase with decreasing film thickness. These new results imply not only that the mobility of the liquid molecules adjacent to the solid increases with decreasing solid-liquid interactions, but also that the mobility adjacent to the free surface of the film is higher than in the bulk, so that the effective viscosity of the film decreases with thickness.  相似文献   

20.
Changes in the wettability and surface contact properties of polytetrafluoroethylene (PTFE) and tetrafluoroethylene-ethylene copolymer films modified in a direct current discharge at the cathode and anode depending on the storage time in air at room temperature and on heating to 200°C have been studied. Changes in the chemical composition of film surfaces have been examined by X-ray photoelectron spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号