首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 0 毫秒
1.
The rheological characterisation of a high-density polyethylene is performed by means of measurements of the storage and loss moduli, the shear viscosity and the transient uniaxial elongational viscosity, the latter being obtained with the Meissner extensional rheometer. The rheological behaviour of the polymeric material is described by means of a multi-mode Phan Thien-Tanner fluid model, the parameters of which are successively fitted on the basis of the linear and non-linear properties. By using a semi-analytical technique and the finite element method, numerical investigations are performed for the shape recovery of the sample, and the predictions are compared with their experimental counterparts. Surface tension effects are also explored. We discuss the agreement between the experiments and the simulation results. Received: 15 October 1998 Accepted: 22 December 1998  相似文献   

2.
In this work, the rheological behaviour of high molecular mass polyamide 6 (PA6)/organo-montmorillonite nano-composites, obtained via melt blending, was investigated under shear and extensional flow. Capillary rheometry was used for the measurement of high shear rate steady state shear viscosity and die entrance pressure losses; further, by the application of a converging flow method (Cogswell model) to these experimental results, elongational viscosity data were indirectly calculated. The extensional behaviour was directly investigated by means of melt spinning experiments, and data of apparent elongational viscosity were determined. The results evidenced that the presence of the organo-clay in filled PA6 melts modifies the rheological behaviour of the material, with respect to the unfilled polymer, in dependence on the type of flow experienced by the fluid. In shear flow, the nano-composites showed a slightly lower viscosity than neat PA6, whereas in elongation, they appeared much more viscous, in dependence on the organo-clay content.  相似文献   

3.
The role of elongational viscosity in the mechanism of drag reduction by polymer additives is investigated qualitatively by means of direct numerical simulations of a turbulent pipe flow. For the polymer solution, a generalised Newtonian constitutive model is utilised in which the viscosity depends on the second and third invariant of the rate-of-strain tensor via an elongation parameter. This elongation parameter is capable of identifying elongational type of regions within the flow. The simulations show that complementary to stretching of the polymers, also compression must be incorporated to have drag reduction, contrary to many suggestions done in the literature on the mechanism which assume that stretching of the polymers is most important.  相似文献   

4.
Linear and branched PBTP samples were synthesized and characterized in terms of the intrinsic viscosity, the melt-flow-index and, for some, the melt viscosity over a range of shear rates at 250 °C.An exponent of 3.2 in the equation relating to was found for linear samples. Both linear and branched samples exhibited Newtonian behaviour over a wide range of shear rates, but for any given melt-viscosity the branched samples became shear thinning at lower shear rates than the linear ones. Correlation between a branching index,, and melt-visocity ratio (0,b/0,l) was in agreement with a previous theoretical study.  相似文献   

5.
This work focuses on the numerical dissipation features of high-order flux reconstruction (FR) method combined with different numerical fluxes in turbulence flows. The famous Roe and AUSM+ numerical fluxes together with their corresponding low-dissipation enhanced versions (LMRoe, SLAU2) and higher resolution variants (HR-LMRoe, HR-SLAU2) are incorporated into FR framework, and the dissipation interplay of these combinations is investigated in implicit large eddy simulation. The numerical dissipation stemming from these convective numerical fluxes is quantified by simulating the inviscid Gresho vortex, the transitional Taylor–Green vortex and the homogenous decaying isotropic turbulence. The results suggest that low-dissipation enhanced versions are preferential both in high-order and low-order cases to their original forms, while the use of HR-SLAU2 has marginal improvements and the HR-LMRoe leads to degenerated solution with high-order. In high-order the effects of numerical fluxes are reduced, and their viscosity may not be dissipative enough to provide physically consistent turbulence when under-resolved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号