首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The elongational behaviour of polyethylene samples having different molecular structure has been tested. Elongational viscosity measurements have been carried out using the isothermal melt spinning technique. The extensional behaviour of the different samples is analysed as a function of total strain. The effect of long-chain branching on elongational viscosities is described. A comparison is presented between elongational viscosity and melt strength data.Some of the results reported here were presented at the VIIIth International Congress on Rheology, Naples, September 1–5, 1980, cf. [16].  相似文献   

2.
In this work, the rheological behaviour of high molecular mass polyamide 6 (PA6)/organo-montmorillonite nano-composites, obtained via melt blending, was investigated under shear and extensional flow. Capillary rheometry was used for the measurement of high shear rate steady state shear viscosity and die entrance pressure losses; further, by the application of a converging flow method (Cogswell model) to these experimental results, elongational viscosity data were indirectly calculated. The extensional behaviour was directly investigated by means of melt spinning experiments, and data of apparent elongational viscosity were determined. The results evidenced that the presence of the organo-clay in filled PA6 melts modifies the rheological behaviour of the material, with respect to the unfilled polymer, in dependence on the type of flow experienced by the fluid. In shear flow, the nano-composites showed a slightly lower viscosity than neat PA6, whereas in elongation, they appeared much more viscous, in dependence on the organo-clay content.  相似文献   

3.
We use a modified filament stretching rheometer to quantify the influence of a known controlled pre-shear history on the transient extensional viscosity of a dilute polymer solution. Two different types of pre-deformation are explored; both influence the subsequent stretching significantly, albeit in opposite ways. Small-amplitude oscillatory straining parallel to the direction of stretching enhances strain hardening and accelerates the tensile stress growth toward the steady-state value. Conversely, steady torsional shearing orthogonal to the direction of stretching retards strain hardening and results in a delayed approach to steady-state elongational flow. In both cases, the final steady-state extensional viscosity is the same as that observed with no pre-shearing. Calculations using a finitely extensible nonlinear elastic Peterlin dumbbell model qualitatively capture the trends observed in experiments, enabling interpretation of these observations in terms of the degree of polymer chain stretching imposed by the flow before extensional stretching.  相似文献   

4.
Isothermal melt, fiber-spinning was recently analyzed by means of a nonlinear, integral, constitutive equation that incorporates shear history effects, spectrum of relaxation times, shear-thinning, and extension thinning or thickening when either the drawing force or the draw ratio is specified. The predictions agreed with experimental data on spinning of polystyrene, low-density polyethylene, and polypropylene melts. The predicted apparent elongational viscosity along the threadline (which, as shown in this work, must be identical to that measured experimentally by fiber spinning type of elongational rheometers) is compared with the true elongational viscosity predicted by the same constitutive equation under well-defined experimental conditions of constant extension rate, independent of any strain history. It is concluded that the apparent elongational viscosity, as measured by fiber-spinning, approaches the true elongational viscosity at low Weissenberg numbers (defined as the product of the liquid's relaxation time multiplied by the extension rate). At moderate Weissenberg numbers, the two viscosities may differ by an order of magnitude and their difference grows even larger at high Weissenberg numbers.  相似文献   

5.
The behavior of short glass fiber–polypropylene suspensions in extensional flow was investigated using three different commercial instruments: the SER wind-up drums geometry (Extensional Rheology System) with a strain-controlled rotational rheometer, a Meissner-type rheometer (RME), and the Rheotens. Results from uniaxial tensile testing have been compared with data previously obtained using a planar slit die with a hyperbolic entrance. The effect of three initial fiber orientations was investigated: planar random, fully aligned in the stretching flow direction and perpendicular to it. The elongational viscosity increased with fiber content and was larger for fibers initially oriented in the stretching direction. The behavior at low elongational rates showed differences among the various experimental setups, which are partly explained by preshearing history and nonhomogenous strain rates. However, at moderate and high rates, the results are comparable, and the behavior is strain thinning. Finally, a new constitutive equation for fibers suspended into a fluid obeying the Carreau model is used to predict the elongational viscosity, and the predictions are in good agreement with the experimental data.  相似文献   

6.
应用共转导数型本构方程研究了液晶高分子纺丝挤出过程的拉伸黏度,应用计算机符号运算软件 Maple得出解析表达式,拉伸黏度与拉伸率之间关系(随剪切速率变化)表明存在分岔现象,得出拉伸黏度显著高于相应的剪切黏度,解释了液晶高分子熔体挤出时不发生挤出胀大的物理机制.  相似文献   

7.
An experimental investigation of the viscosity overshoot phenomenon observed during uniaxial extension of a low density polyethylene is presented. For this purpose, traditional integral viscosity measurements on a Münstedt-type extensional rheometer are combined with local measurements based on the in-situ visualization of the sample under extension. For elongational experiments at constant strain rates within a wide range of Weissenberg numbers (Wi), three distinct deformation regimes are identified. Corresponding to low values of Wi (regime I), the tensile stress displays a broad maximum, but such maximum is observed with various polymeric materials deformed at low rates and it should not be confused with the “viscosity overshoot” phenomenon. Corresponding to intermediate values of Wi (regime II), a local maximum of the integral extensional viscosity is systematically observed. Moreover, within this regime, a strong discrepancy between integral measurements and the space average of the local elongational viscosity is observed which indicates large deviations from an ideal uniaxial deformation process. Images of samples within this regime reinforce this finding by showing that, corresponding to the maximum of the integral viscosity, secondary necks develop along the sample. The emergence of a maximum of the integral elongational viscosity is, thus, related to the distinct inhomogeneity of deformation states and most probably not to the rheological properties of the material. In the fast stretching limit (high Wi, regime III), the overall geometric uniformity of the sample is well preserved, no secondary necks are observed and both the integral and the space averaged transient elongational viscosity show no maximum. A detailed but yet incomplete comparison of the experimental findings with results from the literature is presented and several open questions are stated.  相似文献   

8.
Extensional viscosity of a low-density polyethylene was measured at three temperatures in uniaxial extension by Sentmanat Extension Rheometer, and in contraction flow using the Cogswell analysis. The molecular stress function model was applied to describe the experimental results. The achieved maximum values from uniaxial transient tests were in accordance with the ones obtained by Cogswell method at similar strain level, and the molecular stress function model was able to describe the experimental transient uniaxial extensional data. The steady-state extensional viscosity was not reached in the experiments.  相似文献   

9.
Numerical simulations have been undertaken for the creeping entry flow of a well-characterized polymer melt (IUPAC-LDPE) in a 4:1 axisymmetric and a 14:1 planar contraction. The fluid has been modeled using an integral constitutive equation of the K-BKZ type with a spectrum of relaxation times (Papanastasiou–Scriven–Macosko or PSM model). Numerical values for the constants appearing in the equation have been obtained from fitting shear viscosity and normal stress data as measured in shear and elongational data from uniaxial elongation experiments. The numerical solutions show that in the axisymmetric contraction the vortex in the reservoir first increases with increasing flow rate (or apparent shear rate), goes through a maximum and then decreases following the behavior of the uniaxial elongational viscosity. For the planar contraction, the vortex diminishes monotonically with increasing flow rate following the planar extensional viscosity. This kinematic behavior is not in agreement with recent experiments. The PSM strain-memory function of the model is then modified to account for strain-hardening in planar extension. Then the vortex pattern shows an increase in both axisymmetric and planar flows. The results for planar flow are compared with recent experiments showing the correct trend.  相似文献   

10.
In a Rheotens experiment, the tensile force needed for elongation of an extruded filament is measured as a function of the draw ratio. For thermo-rheologically simple polymer melts, the existence of Rheotens-mastercurves was proved by Wagner, Schulze, and Göttfert (1995). Rheotens-mastercurves are invariant with respect to changes in melt temperature and changes in the average molar mass. By use of purely viscous models, we convert Rheotens-mastercurves of a branched and a linear polyethylene melt to elongational viscosity as a function of strain rate. The resulting elongational viscosity from constant force extension experiments is found to be in general agreement with what is expected as steady-state viscosity of polyethylene melts measured in either constant strain-rate or constant stress mode.Dedicated to Prof. Dr. J. Meissner on the occasion of his retirement from the chair of Polymer Physics at the Eidgenössische Technische Hochschule (ETH) Zürich, Switzerland  相似文献   

11.
Mechanical spinning of fluid filaments was used to generate an extensional flow, in which rheological measurements were obtained for a Newtonian fluid, two aqueous polymer solutions, and two fluid suspensions of rod-shaped particles. The tensile stress was determined by measuring the tensile force of the fluid filament while the kinematics were determined from photographic measurement of the filament profile and the assumption of a flat velocity profile. The measured tensile stresses for the Newtonian fluid matched predicted stresses, thereby confirming the validity of the experimental technique.The spinning behavior of each polymer solution could be correlated as stress versus extension rate. The apparent “spinning viscosity” increased with increasing rate of extension, in contrast to shear-thinning behavior in viscometric flow. For the fluid suspensions, the presence of rod-shaped particles increased the apparent viscosity far more in extensional flow than in shear. Tensile stresses calculated from a theoretical formula for suspensions proposed by Batchelor agreed rather well with experiment. Some general criteria for the interpretation of the spinning experiment are proposed, and some microrheological implications of the present findings are discussed.  相似文献   

12.
The mechanism by which the addition of a small amount of boron nitride into a polyethylene eliminates gross melt fracture is elucidated. Simple elongational viscosity measurements at high rates revealed that the presence of boron nitride decreases the extensional viscosity of polyethylenes. The extensional rates at which these effects are present were found to be about the same with those at which gross melt fracture is obtained (calculated from Cogswells analysis). Thus, it can be argued that the well dispersed boron nitride particles decrease extensional stresses that are responsible for gross melt fracture and/or their presence dissipate the release of energy resulting from isolated rupture or slip planes within the melt originating at the entrance to the capillary.  相似文献   

13.
Polymer melt viscoelastic fluids often exhibit in elongational flows a significant increase in the elongational viscosity known as strain hardening. This phenomenon could be related to polydispersity, e.g. the presence of a small fraction of very high molecular weight chains whose time frame relaxation spectrum is different from the small chains one. In the present work, we present a fully objective constitutive equation (CE) to primarily model extensional strain hardening based on the new concept of multiple configuration materials. Next, we analyze the CE stability properties with respect to small perturbations about the rest state.  相似文献   

14.
We describe the utilization of idealized stagnation point extensional flows, produced by opposed jets, for birefringence visualization of induced molecular strain and flow resistance measurements. We identify rheological changes associated with the coil---stretch transition which occurs beyond a critical strain-rate in elongational flow-fields. In dilute solutions of monodisperse atactic polystyrene, increases in extensional viscosity are observed as isolated molecules become stretched. The largest increases in extensional viscosity, however, are found only beyond a critical concentration and strain rate, and are associated with the stretching of transient networks of interacting molecules. These results parallel similar effects seen in porous media flow and capillary entrance experiments. We determine the molecular weight dependence of the critical concentration which scales as M−0.55 in agreement with pairwise interaction of coils, but is much lower than conventional values of the critical polymer concentration, c*. We believed that polydispersity may play an important role in the development of such transient networks, and in controlling the degradation behaviour during flow.  相似文献   

15.
16.
Rheological behaviour of polymer nanocomposites has been usually characterized by rotational as well as capillary rheometry, which are both time and cost consuming. We have already published that reinforcement in polymer-clay nanocomposites can be estimated very fast using extensional rheometer in combination with a capillary rheometer. It has been proven that the magnitude of melt strength can be correlated with that of tensile strength, i.e. 3D physical network made of layered silicate and polymer matrix, which is responsible for material reinforcement, can be monitored directly using extensional rheometry. Therefore, additional time for samples preparation by press or injection moulding as well for long measurements by tensile testing is not required any more. In this contribution, results of extensional rheometry measured directly during compounding process are presented. In this manner, further reduction in time required for material characterization has been achieved. The samples have been prepared by advanced compounding using a melt pump and special screw geometries. With the use of on-line extensional rheometry and off-line rotational rheometry, different nanocomposites have been tested and the effect of processing conditions (screw speed and geometry in the twin-screw extruder) on elongational and viscoelastic properties has been investigated. It has been found that the level of melt strength measured by extensional rheometry correlates with a high accuracy with dynamic rheological data measured by rotational rheometry. It was hereby confirmed that the network structure made of silicate platelets in polymer melt is reflected in both elongational and shear flow in the same way.  相似文献   

17.
Summary The viscosity and the recoverable strain in the steady state of elongation have been measured on several polyethylenes of different molecular structures. The elongational viscosity as a function of tensile stress runs through a more or less pronounced maximum in the nonlinear range whereas in the linear range the Trouton viscosity is reached. For low density polyethylenes it could be demonstrated that the maximum of the steady-state elongational viscosity and the elasticity expressed by the steady-state compliances in shear and tension sensitively increase if the molecular weight distribution is broadened by the addition of high molecular weight components. A variation of the weight average molecular weight does only shift the elongational viscosity curve but leaves its shape unchanged. Two of the four high density polyethylenes investigated do not show a maximum of the steady-state elongational viscosity, for the others it is less pronounced than in the case of low density polyethylenes. The influence of branching on the elongational behaviour of polyethylene melts in the steady-state and the transient region is qualitatively discussed.With 11 figures and 4 tables  相似文献   

18.
The shear and extensional rheology of three concentrated poly(ethylene oxide) solutions is examined. Shear theology including steady shear viscosity, normal stress difference and linear viscoelastic material functions all collapse onto master curves independent of concentration and temperature. Extensional flow experiments are performed in fiber spinning and opposed nozzles geometries. The concentration dependence of extensional behavior measured using both techniques is presented. The zero-shear viscosity and apparent extensional viscosities measured with both extensional rheometers exhibit a power law dependence with polymer concentration. Strain hardening in the fiber spinning device is found to be of similar magnitude for all test fluids, irrespective of strain rate. The opposed nozzle device measures an apparent extensional viscosity which is one order of magnitude smaller than the value determined with the fiber spinline device. This could be attributed to errors caused by shear, dynamic pressure, and the relatively small strains developed in the opposed nozzle device. This instrument cannot measure local kinematics or stresses, but averages these values over the non-homogenous flow field. These results show that it is not possible to measure the extensional viscosity of non-Newtonian and shear thinning fluids with this device. Fiber spin-line experiments are coupled with a momentum balance and constitutive model to predict stress growth and diameter profiles. A one-mode Giesekus model accurately captures the plateau values of steady and dynamic shear properties, but fails to capture the gradual shear thinning of viscosity. Giesekus model parameters determined from shear rheology are not capable of quantitatively predicting fiber spinline kinematics. However, model parameters fit to a single spinline experiment accurately predict stress growth behavior for different applied spinline tensions.  相似文献   

19.
A novel experimental setup for the uniaxial extension of uncured elastomers is presented, and room temperature experiments at constant Hencky strain rate are performed by means of a commercial Rheotens tensile tester originally designed for the determination of the melt strength of polymer melts. Successful results are obtained for materials related to many aspects of the elastomers production, namely, gum elastomers and carbon black compounds. Stress growth experiments are reported for filled and unfilled high-cis-polybutadiene, and the extensional behavior is related to the carbon black dispersion. Although originally thought as an experimental tool for polymer melts, the proposed Rheotens setup can also perform constant strain rate tensile testing on thermoplastic rubbers. Stress-strain experiments are performed on a microphase separated polystyrene-b-poly(ethylene butylene)-b-polystyrene (SEBS) copolymer and related blends with polypropylene, showing the effect of a constant deformation rate on the network response. Relaxation experiments after cessation of extensional flow are also reported for the investigated materials. With respect to commonly used tensile testing procedures for elastomers at constant elongation rate and time decreasing strain rate, a complete and accurate investigation of the extensional behavior of many uncured elastomers can be carried out with the additional advantage of using a reduced amount of material.  相似文献   

20.
The problem of determination of invariant material functions for elongational flows in which two components of the constant strain-rate tensor are equal is briefly discussed, and a method of its solution described. The method is based on simultaneous modeling of the elongational viscosity as measured in uniform uniaxial elongational flow, and the shear viscosity as measured in steady viscometric flow. A single integral model with a strain-rate dependent memory is used to correlate both viscosities over a given experimental range of strain rates. The procedure has been applied to a set of experimental data obtained for a low-density polyethylene melt by Laun and Münstedt.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号