首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The equilibrium geometries and relative stabilities of several structural isomers of tungsten hexahydride, WH6, have been obtained at different levels of quantum chemical calculations. The performance of various strategies to (i) include electron correlation, viz. density functional theory based approaches, Møller/Plesset perturbation and coupled cluster theory, and to (ii) account for scalar relativistic effects, viz. various relativistic effective core potentials, first order perturbation theory, a quasi-relativistic treatment employing a Pauli Hamiltonian, and use of the Douglas/Kroll operator, are compared to the best theoretical data available. It is shown that relativistic and electron correlation effects are most important for the high-symmetry species, that these effects give rise to opposite trends in relative energies, and that overall the relativistic effects dominate. The most efficient way to incorporate relativistic effects appears to be via the use of relativistic effective core potentials, while the correlation energies are best taken account of using a conventional method such as CCSD(T). © 1998 John Wiley & Sons, Inc. J Comput Chem 19: 1604–1611, 1998  相似文献   

2.
Dielectric measurements as a function of temperature and frequency are reported for non-irradiated and γ-irradiated keratin, the irradiation doses being 5 and 50 kGy. The effect of γ-irradiation on the dielectric permittivity of keratin is not observed up to 190°C. In this temperature range, the values of the relaxation time and dipole moment are similar for non-irradiated and irradiated keratin at the same temperature. The influence of irradiation is manifested as a shift of the parameter (s) peaks associated with the process of denaturation, towards lower temperatures. This fact is supported by lower values of the dipole moment for irradiated than for non-irradiated keratin, as a result of a decrease in the number of polar groups in the side and main chains of the macromolecule in the irradiated samples.  相似文献   

3.
Molar Kerr constants and electric dipole moments of hydrogen bonded complexes that pyridine-N-oxide and its derivatives form with phenols are studied (a) experimentally, (b) by the vector/tensor addition scheme, and (c) by AM1 and PM3 semi-empirical quantum chemical methods. The data are used to establish the geometry of the complexes. It is shown that for a series of pyridine-N-oxide derivatives, the logarithm of the complex formation equilibrium constant correlates with the charge on the oxygen atom of the N–O group. A method to calculate the first and second complex formation constants based on the electric properties of the individual components of the complex is proposed. A relationship between the polarity of the hydrogen bond and the sum of the charges on the hydrogen and oxygen atoms forming the bond is established for the complexes under study.  相似文献   

4.
The electronic structure of a large fragment of the Pb2Fe(CN)6 crystal lattice with the trigonal structure is studied in the framework of a fully relativistic discrete variational cluster method. On the basis of comparing the results obtained with the data of previous non-relativistic calculations we have considered the relativistic effects on the electronic energy spectrum, the charge density distribution, and Pb-N, N-C, and C-Fe chemical bonding.  相似文献   

5.
The present work stems from our interest in the synthesis, characterization and biological evaluation of lanthanide(III) complexes of a class of coumarin based imines which have been prepared by the interaction of hydrated lanthanide(III) chloride with the sodium salts of 3-acetylcoumarin thiosemicarbazone (ACTSZH) and 3-acetylcoumarin semicarbazone (ACSZH) in 1:3 molar ratio using thermal as well as microwave method. Characterization of the ligands as well as the metal complexes have been carried out by elemental analysis, melting point determinations, molecular weight determinations, magnetic moment, molar conductance, IR, (1)H NMR, (13)C NMR, electronic, EPR, X-ray powder diffraction and mass spectral studies. Spectral studies confirm ligands to be monofunctional bidentate and octahedral environment around metal ions. The redox behavior of one of the synthesized metal complex was investigated by cyclic voltammetry. Further, free ligands and their metal complexes have been screened for their antimicrobial as well as DNA cleavage activity. The results of these findings have been presented and discussed.  相似文献   

6.
7.
In this article, we present the so far most extended investigation of the calculation of the coupling constant polarizability of a molecule. The components of the coupling constant polarizability are derivatives of the nuclear magnetic resonance (NMR) indirect nuclear spin–spin coupling constant with respect to an external electric field and play an important role for both chiral discrimination and solvation effects on NMR coupling constants. In this study, we illustrate the effects of one‐electron basis sets and electron correlation both at the level of density functional theory as well as second‐order polarization propagator approximation for the small molecule hydrogen peroxide, which allowed us to perform calculations with the largest available basis sets optimized for the calculation of NMR coupling constants. We find a systematic but rather slow convergence with the one‐electron basis set and that augmentation functions are required. We observe also large and nonsystematic correlation effects with significant differences between the density functional and wave function theory methods. © 2012 Wiley Periodicals, Inc.  相似文献   

8.
Indirect relativistic bridge effect (IRBE) and indirect relativistic substituent effect (IRSE) induced by the ‘heavy’ environment of the IV‐th, V‐th and VI‐th main group elements on the one‐bond and geminal 13C? 1H spin–spin coupling constants are observed, and spin‐orbit parts of these two effects were interpreted in terms of the third‐order Rayleigh–Schrödinger perturbation theory. Both effects, IRBE and IRSE, rapidly increase with the total atomic charge of the substituents at the coupled carbon. The accumulation of IRSE for geminal coupling constants is not linear with respect to the number of substituents in contrast to the one‐bond couplings where IRSE is an essentially additive quantity. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
A practical means of overcoming the limitation in accuracy of conformational analysis due to incompleteness of basis sets used in ab initio calculations involves calculating the energy with a series of systematically improving basis sets and extrapolating to the basis set limit. We report here a focal-point conformational analysis for methanol. The Hartree–Fock energy converges exponentially to the basis set limit, while the convergence of second-order correlation energy is well described by the formula . This formula also describes well the convergence of fourth-order correlation energy. The height of the rotational barrier at the Hartree–Fock level can be obtained reliably by taking the difference of the extrapolated energies of the two conformations and correcting the difference for correlation effects. Electron correlation has only a small decreasing effect on the height of the rotational barrier in methanol. The focal-point value for the torsional barrier in methanol is 0.999±0.007 kcal/mol. Acknowledgement.This project was supported by Provost Funds at University of California, Santa Barbara (UCSB). The computational resources were provided partially by the National Computational Science Alliance and UCSBs Supercomputer Facility. We also acknowledge the Horgan Award (University of Missouri-Columbia) to K. K., which made possible the purchase of additional computational resources. We thank Robert Gdanitz and Bernie Kirtman for valuable discussions and Jozef Noga for providing us with a copy of the DIRCCR12-OS program.  相似文献   

10.
New and useful aspects of chemical reactivity as described by reactivity indexes and used in connection with the maximum hardness and minimum polarizability principles (MHP and MPP, respectively) are discussed and illustrated for two classical reactions in organic chemistry. They include the Beckmann rearrangement and the condensation reactions of -amino acids. The MPP appears as a more general rule than the MHP. Another relevant result is related to the usefulness of both empirical reactivity rules to predict the most probable reaction mechanism among two different pathways displaying very close values in activation energy (competitive pathways). This is illustrated for the condensation reaction of a series of -amino acids: while the accepted stepwise route follows both the MHP and MPP rules, the alternative concerted channel does not, yet its associated activation energy is slightly lower than that corresponding to the nonconcerted reaction mechanism.From the Proceedings of the 28th Congresco de Quimicos Teóricos de Expresión Latina (QUITEL 2002)  相似文献   

11.
12.
Solvent effects on the 99Ru NMR chemical shift of the complex fac-[Ru(CO)3I3]- are investigated computationally using density functional theory. Further, benchmark calculations of the 99Ru shift for a set of ten Ru complexes have been performed in order to calibrate the computational model and to determine the importance of relativistic effects on the 99Ru nuclear magnetic shielding and on the chemical shift. A computational model for fac-[Ru(CO)3I3]- that includes both explicit solvent molecules and a continuum model is shown to yield the best agreement with experiment. Relativistic corrections are shown to be of minor importance for determining 99Ru chemical shifts. On the other hand, the nature of the density functional is of importance. In agreement with literature data for ligand trends of 99Ru chemical shifts, the chemical shift range for different solvents is also best reproduced by a hybrid functional.  相似文献   

13.
Structure and vibrational frequencies of lawsoneoxime and its C3-substituted (R=CH3, NH2, Cl, NO2) derivatives in keto and nitrosophenol forms have been obtained employing the Hartree–Fock and density functional methods. Charge distributions in different conformers have been studied using the molecular electrostatic potential topography as a tool. For all these derivatives except for nitrolawsoneoxime the amphi conformer in the keto form is predicted to be of lowest energy, which can partly be attributed to hydrogen bonding through the oximino nitrogen. In the nitro derivative, however, the preference to form a six membered ring owing to O–H–O hydrogen-bonded interactions makes the anti conformer (keto) the stablest. Further one of the nitrosophenol conformers of nitrolawsoneoxime turns out to be very close in energy (0.21 kJ mol–1 higher) to this anti conformer. The consequences of hydrogen bonding on charge distribution and vibrational spectra are discussed.  相似文献   

14.
The main purpose of this paper is to present accurate infrared integrated intensities of liquid toluene, C6H5CH3, at 25 °C. Also presented are the decadic molar absorption coefficients, Em, the real and imaginary dielectric constants, ε′ and ε″, and the real and imaginary molar polarizabilities, m and m. Integrated intensities were determined as Cj, the area under bands in the spectrum, for all bands between 4800 and 440 cm−1. The contributions from the different bands were separated by fitting the spectrum with classical damped harmonic oscillator bands. The uncertainties in the integrated intensities of most bands are estimated to be 5–10%, with the uncertainties in very weak bands and in shoulders possibly up to 100%. The intensity that should be assigned to the fundamentals is more difficult to estimate due to Fermi resonance with overtone and combination bands, and a best estimate is given. The integrated intensities of the fundamental vibrations and the corresponding transition dipole moments are summarized and are compared with literature values for the gas.  相似文献   

15.
The nature of the 1,3 hydrogen rearrangement of formamidine (H2N-CH=NH) and the solvent effects on that reaction are studied with ab initio molecular orbital calculations on the basis of the supermolecule model. The reaction path and the motion of the migrating hydrogen atom are traced by using the concept of the intrinsic reaction coordinate (IRC). Four types of orientation of one water molecule to formamidine at the transition state of reaction are examined and the results are discussed from the standpoint of the orbital interactions.  相似文献   

16.
This work reports on the comprehensive calculation of the NMR one‐bond spin–spin coupling constants (SSCCs) involving carbon and tellurium, 1J(125Te,13C), in four representative compounds: Te(CH3)2, Te(CF3)2, Te(C?CH)2, and tellurophene. A high‐level computational treatment of 1J(125Te,13C) included calculations at the SOPPA level taking into account relativistic effects evaluated at the 4‐component RPA and DFT levels of theory, vibrational corrections, and solvent effects. The consistency of different computational approaches including the level of theory of the geometry optimization of tellurium‐containing compounds, basis sets, and methods used for obtainig spin–spin coupling values have also been discussed in view of reproducing the experimental values of the tellurium–carbon SSCCs. Relativistic corrections were found to play a major role in the calculation of 1J(125Te,13C) reaching as much as almost 50% of the total value of 1J(125Te,13C) while relativistic geometrical effects are of minor importance. The vibrational and solvent corrections account for accordingly about 3–6% and 0–4% of the total value. It is shown that taking into account relativistic corrections, vibrational corrections and solvent effects at the DFT level essentially improves the agreement of the non‐relativistic theoretical SOPPA results with experiment. © 2016 Wiley Periodicals, Inc.  相似文献   

17.
Different density functional theory (DFT) functionals have been evaluated by studying geometries and bond strengths of YbH, YbF, EuF, GdF, and NdF and compared with accurate CCSD(T) results and, when available, experiment. The agreement between the CCSD(T) results and experiment, when available, is good. The agreement is also good between bond strengths calculated at the DFT level using relativistic effective core potentials and the CCSD(T) results. However, the all-electron ADF calculations systematically overestimate binding energies. The geometries obtained by both the all-electron and the effective-core-potential-based DFT calculations are generally in good agreement with the CCSD(T) results.Contribution to the Björn Roos Honorary Issue  相似文献   

18.
A crystallographic investigation of anion–π interactions and hydrogen bonds on the preferred structural motifs of molybdenum(VI) complexes has been carried out. Two molybdenum(VI) network polymers MoO2F4·(Hinca)2 (1) and MoO2F3(H2O)·(Hinpa) (2), where inca = isonicotinamide and inpa = isonipecotamide, have been synthesized, crystallographically characterized and successfully applied to alcohol oxidation reaction. Complex 1 crystallizes in the monoclinic space C2/c: a = 16.832(3) Å, b = 8.8189(15) Å, c = 12.568(2) Å, β = 118.929(3)°, V = 1560.1(5) Å3, Z = 4. Complex 2 crystallizes in the triclinic space P-1: a = 5.459(2) Å, b = 9.189(4) Å, c = 12.204(5) Å, α = 71.341(6)°, β = 81.712(7)°, γ = 77.705(7)°, V = 564.8(4) Å3, Z = 2. Complex 1 consists of hydrogen bonding and anion–π interactions, both of which are considered as important factors for controlling the geometric features and packing characteristics of the crystal structure. The geometry of the sandwich complex of [MoO2F4]2− with two pyridine rings indicates that the anion–π interaction is an additive and provides a base for the design and synthesis of new complexes. For complex 2, the anions and the protonated inpa ligands form a 2D supramolecular network by four different types of hydrogen contacts (N–HF, N–HO, O–HF and O–HO). The catalytic ability of complexes 1 and 2 has also been evaluated by applying them to the oxidation of benzyl alcohol with TBHP as oxidant.  相似文献   

19.
The effect of the so-called picture change on expectation values of one-electron operators in approximate two(one)-component relativistic theories is discussed. This effect is expected to be particularly large for operators which assume large values in the vicinity of heavy nuclei. The numerical results illustrating the picture change effect on electric field gradients at nuclei have been obtained in the spin-free Pauli and Douglas–Kroll approximations. It has been found that the picture change effect lowers the electric field gradient at I in HI by about 1 a.u. Very large picture change effect (−8 a.u.) has been calculated for HAt. It is concluded that in accurate calculations of expectation values of operators involving high inverse powers of the electron–nucleus distance the picture change, which accompanies the transformation of the Dirac (Dirac–Coulomb) equation to approximate two(one)-component relativistic Hamiltonians, must be taken into account. © 1998 John Wiley & Sons, Inc. Int J Quant Chem 68: 159–174, 1998  相似文献   

20.
The dipole (), quadrupole (C), and dipole-quadrupole (B) polarizabilities and the dipole hyperpolarizability () of the chloride ion have been calculated by using the many-body perturbation theory approach and a series of large polarized GTO/CGTO basis sets. The complete fourth-order treatment of the electron correlation effects with a basis set comprising the s, p, d, f, and g functions gives: =38.01 a.u., C=211.5 a.u., B=–5.14×103 a.u., and =128. 5×103 a.u. as compared to the corresponding SCF values (=31.49 a.u., C=158.9 a.u., B=–2.92×103 a.u., =57.7×103 a.u.). The quenching of polarizabilities of the Cl ion in solutions and ionic crystals is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号