首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A theoretical study of the structure, charge distribution, rotational barrier and fundamental vibrations of anhydrous betaine (CH3)3NCH2COO (trimethylglycine) was carried out and compared with available experimental data. Calculations were carried out at HF, MP2 and B3LYP levels using a 6-31+G(d,p) basis set. The calculated rotational barrier of the betaine carboxylic group is 40.5 kJ/mol at the MP4(SDQ)/6-311G(d,p)//HF/6-31+G(d,p) level of theory. The rotation of the carboxylic group changes the molecule from a highly symmetric (C s ) conformation into a twisted conformation resulting in shortening of the molecule by about 50 pm. Natural population analysis (NPA) indicates intramolecular interaction between the carboxylic oxygen and the nearest methyl hydrogens resulting in internal hydrogen bonding. MP4(SDQ)/6-311G(d,p) single-point NPA calculations on a betaine monohydrate model taken from the X-ray geometry show an expected weakening in the internal hydrogen bond. Calculations explain why betaine preferentially crystallizes in high local C s symmetry. Received: 24 March 1998 / Accepted: 3 September 1998 / Published online: 7 December 1998  相似文献   

2.
Ab initio and density functional theory (DFT) calculations using the GAUSSIAN 94 program have been performed to investigate the molecular structures of HNSi and HSiN in the ground state as well as the transition state for the HNSi–HSiN isomerization reaction at the 6-311G(d,p), 6-311+G(2d,p) and 6-311+G(2df,p) basis sets. The results show that DFT calculations at higher levels of theory reproduce experimental vibrational frequencies of both HNSi and HSiN better than ab initio methods including electron correlation effects. Those calculated geometries are accurate enough to predict the rotational constant of HNSi. The barrier height for the isomerization reaction is found to be about 10 kcal/mol.  相似文献   

3.
Hydrolysis of carbonyl dichloride or phosgene (Cl2CO) in gas phase has been investigated at Hartree–Fock, density functional and ab initio levels of theory. The effects of basis sets on the energetics of the reaction have also been explored. Calculations reveal that initially carbonyl dichloride and water form a weak complex and this complex can react further in two ways. In Path 1, water adds on to carbonyl dichloride across carbonyl bond in a concerted fashion to give dichloromethane diol, and this diol decomposes to form chloro formic acid by syn-1,2-elimination of HCl and forms CO2 and HCl as final products. Path 2 is the concerted addition of water across carbon chlorine bond and elimination of HCl in a single step leading to the formation of chloro formic acid directly. This second path that skips the formation of dichloromethane diol is observed to be very low lying and hence is kinetically favored. Addition of second water molecule to the reacting system is found to catalyze the reaction by stabilizing the complex, intermediate and transition states and reduces the activation energy to 24.6 kcal mol−1 compared to 29.9 kcal mol−1 for a single water molecule.  相似文献   

4.
Theoretical investigations on the kinetics of the elementary reaction H2O2+H→H2O+OH were performed using the transition state theory (TST). Ab initio (MP2//CASSCF) and density functional theory (B3LYP) methods were used with large basis set to predict the kinetic parameters; the classical barrier height and the pre-exponential factor. The ZPE and BSSE corrected value of the classical barrier height was predicted to be 4.1 kcal mol−1 for MP2//CASSCF and 4.3 kcal mol−1 for B3LYP calculations. The experimental value fitted from Arrhenius expressions ranges from 3.6 to 3.9 kcal mol−1. Thermal rate constants of the title reaction, based on the ab initio and DFT calculations, was evaluated for temperature ranging from 200 to 2500 K assuming a direct reaction mechanism. The modeled ab initio-TST and DFT–TST rate constants calculated without tunneling were found to be in reasonable agreement with the observed ones indicating that the contribution of the tunneling effect to the reaction was predicted to be unimportant at ambient temperature.  相似文献   

5.
The study of the grafting of trialkoxysilane R′Si(OR)3 molecules on amorphous silica has been undertaken at the Hartree–Fock level using a biperiodic model for the surface. Different types of slab cut out from the model system Edingtonite (a tetragonal silica structure with five SiO2 groups per unit cell) have been used to simulate isolated and interacting silanol sites at the amorphous silica surface, while only the simple case of HSi(OH)3 has been considered for the interacting molecule. In a first step, for each type of surface the geometrical parameters have been optimised and the surface formation energy determined. The geometrical structure of the grafted molecule is compared with that of the isolated one. The geometrical strains of the surfaces with either isolated or interacting silanols are also compared before and after the grafting reactions. The calculated values of the chemisorption energies show that the grafting process is favored on isolated silanols only if correlation effects are included.  相似文献   

6.
A single crystal of the azidoalane [Me2N(CH2)3]AltBu(N3) (1a), grown in a capillary using a miniature zone melting procedure, was investigated by X-ray analysis. Compound 1a (C9H21AlN4) is a monomeric species in the solid state, which crystallizes in the monoclinic space group P21 with a=6.8560(14) Å, b=12.251(3) Å, c=7.786(2) Å, β=108.51(3)° and Z=2. The results of the X-ray structural determination are compared with the calculated structure of 1a (HF/6-31G(d) and B3LYP/6-31G(d) level of theory). Whereas the overall agreement between the measured and calculated structure is good, the Al–N donor-bond length differs by 11 and 12 pm at the HF and B3LYP level, respectively. To evaluate the effects of a polar environment on the molecular structure of 1a self-consistent reaction field (SCRF) calculations at the HF and B3LYP level with the 6-31G(d) basis set were performed.  相似文献   

7.
A three-dimensional potential energy function has been calculated for the X1Σ+g state of NO+2 from ab initio MRD-CI data. With this PE function, converged vibrational calculations have also been performed for ten vibrational states, with the aid of a computer program developed in the present work for this purpose. The calculated harmonic frequencies, vibrational term values and rotational constants are in good agreement with experimental data.  相似文献   

8.
The gas phase infrared spectrum of 3-aminoacetophenone (3AAP) was measured in the range 5000-500cm(-1) and with a resolution of 0.5cm(-1). The Fourier transform Raman (FT-Raman) and Fourier transform infrared (FT-IR) spectra of 3AAP were recorded in the solid phase. Geometry optimizations were done without any constraint and several thermodynamic parameters were calculated for the minimum energy conformer at ab initio and density functional theory (DFT) levels invoking 6-311G(2df 2p) basis set and the results are compared with the experimental values. Harmonic-vibrational wavenumber was also calculated for the minimum energy conformer at ab initio and DFT levels using 6-31G(d,p) basis set and the results are compared with related molecules. With the help of specific scaling procedures, the observed vibrational wavenumbers in gas phase, FT-IR and FT-Raman spectra were analyzed and assigned to different normal modes of the molecule. Most of the modes have wavenumbers in the expected range, the error obtained was in general very low. The appropriate theoretical spectrogram for the FT-IR spectra of the title molecule is also constructed.  相似文献   

9.
The details of weak C–Hπ interactions that control several inter and intramolecular structures have been studied experimentally and theoretically for the 1:1 C2H2–CHCl3 adduct. The adduct was generated by depositing acetylene and chloroform in an argon matrix and a 1:1 complex of these species was identified using infrared spectroscopy. Formation of the adduct was evidenced by shifts in the vibrational frequencies compared to C2H2 and CHCl3 species. The molecular structure, vibrational frequencies and stabilization energies of the complex were predicted at the MP2/6-311+G(d,p) and B3LYP/6-311+G(d,p) levels. Both the computational and experimental data indicate that the C2H2–CHCl3 complex has a weak hydrogen bond involving a C–Hπ interaction, where the C2H2 acts as a proton acceptor and the CHCl3 as the proton donor. In addition, there also appears to be a secondary interaction between one of the chlorine atoms of CHCl3 and a hydrogen in C2H2. The combination of the C–Hπ interaction and the secondary ClH interaction determines the structure and the energetics of the C2H2–CHCl3 complex. In addition to the vibrational assignments for the C2H2–CHCl3 complex we have also observed and assigned features owing to the proton accepting C2H2 submolecule in the acetylene dimer.  相似文献   

10.
The self-consistent reaction field (SCRF) method based on Onsager's reaction field theory is applied to investigate the effect of polar media on molecular structures of complexes of trimethylamime (TMA) with SOx (x=2,3). The calculated SCRF N–S bond lengths at the MPW1PW91/6-311+G(3df) level are in satisfactory agreement with the experimental N–S bond lengths for the TMA–SOx upon crystallization. The results are enough to demonstrate the usefulness of the reaction field theory in providing qualitative understanding of the medium effect on the partially bonded system such as TMA–SOx.  相似文献   

11.
A wide variety of geometrical structures of NLi6 molecule were studied using HF ab initio and BLYP-DFT techniques. Three stationary configurations which take D4h, D3d and D2d configurations were obtained. Their equilibrium geometries and fundamental frequencies were calculated at HF and BLYP-DFT levels. Among the three stable states, the global minimum prefers D3d configuration, which is different from those of CLi6 and OLi6. The D3d isomer of NLi6 is 3.43 and 28.45 kcal/mol lower in energy than the D4h and D2d ones in the DFT calculation, respectively. All calculations were performed with 6-31G* polarized split-valence basis set.  相似文献   

12.
A systematic study was performed on the small molecular systems built from phosphor, hydrogen and fluorine with the target being to evaluate accurately their ionization potentials and electron affinities, as well as influence fluorine on the ionization potential of phosphor as a central atom. To determine the accuracy of hybrid density functional methods for computing those energies, ionization energies for hydrogen, fluorine and phosphor were calculated and compared with the experimental and CBSQ values. To demonstrate the accuracy of this method, both the ionization potential and the electron affinity for phosphorus and fluorine atoms were calculated and compared with the experimental data. For both PF and PF2, an identical electron affinity of 0.72 eV and for PH and PHF 1.0 eV were suggested.  相似文献   

13.
The reactions of [ReOX3(PPh3)2] (X = Cl, Br) with benzoylpyridine (bopy) have been examined and novel [ReOX2(bopyH)(PPh3)] oxocompounds have been obtained. The complexes were structurally and spectroscopically characterised. In the both structures two-electron reduced form of benzoylpyridine is coordinated to the central ion. The electronic structure of [ReOCl2(bopyH)(PPh3)] has been calculated with the density functional theory (DFT) method, and additional information about binding has been obtained by NBO analysis. The UV–Vis spectrum of the [ReOCl2(bopyH)(PPh3)] has been discussed on the basis of TDDFT calculations.  相似文献   

14.
In this paper, we have calculated the nuclear quadrupole resonance (NQR) parameters of the quadrupole nuclei involved in the hydrogen bonds (COH–C and +N–HOC) in the monomer and pentameric cluster of dl-proline by HF and B3LYP methods and basis sets of 6-311+G* and 6-311++G**. These computations are performed on the basis of X-ray diffraction structural data of dl-proline. The results indicate that the calculations including hydrogen-bonding (HB) interactions (in pentamer) are in better agreement with the experimental data than those in which these interactions are neglected (in monomer). The quantum chemical calculations show that the intermolecular hydrogen-bonding interactions play an important role in determination of the NQR parameters of 14N, 2H of group and 17O.  相似文献   

15.
The excitation LIF spectra of van der Waals complexes of o- and p-methylaniline and CF3Cl, CF3H, CH4 and CF4 in a supersonic free jet are reported. The spectra show a resolved structure characteristic due to the internal rotational transitions of the methyl group. The equilibrium geometries in the ground state of the complexes have been calculated at MP2/6-31+G level of calculation and the intermolecular interaction have been discussed.  相似文献   

16.
D. Talbi  G.S. Chandler  A.L. Rohl   《Chemical physics》2006,320(2-3):214-228
Using state of the art methods of quantum chemistry, potential energy surfaces for the formation of and CO2 (3B2) from CO + O (1D) and CO + O (3P), respectively, have been studied. At the MRSDCI level, we show that the formation of from O (3P) is strongly connected with the height of the barrier localized on the CO + O (3P) entrance channel. At the CCSD(T) level with a large basis set we calculate this barrier to be 5.9 kcal/mol. Consequently, we confirm that the gas-phase formation of CO2 in interstellar molecular clouds is inefficient. To mimic the formation of CO2, through the Eley–Rideal mechanism, on the water ice surfaces of interstellar grains, we have extended our study to consider the formation of CO2 in the presence of water molecules. We show, using density functional and CCSD(T) methods, that the barrier located on the CO + O (3P) reaction entrance channel is hardly affected by the presence of water molecules. We therefore suggest that CO2 formation, through the Eley–Rideal mechanism, on the water ice surfaces of interstellar grains, should be inefficient too.  相似文献   

17.
A three-dimensional potential energy function has been calculated for the X1Σ+g state of NO+2 from ab initio MRD-CI data. With this PE function, converged vibrational calculations have also been performed for ten vibrational states, with the aid of a computer program developed in the present work for this purpose. The calculated harmonic frequencies, vibrational term values and rotational constants are in good agreement with experimental data.  相似文献   

18.
We present calculations of the total energy per unit cell for different bond alternations of the C-C bonds bridging the distance between two aromatic rings in poly(para-phenylene vinylene) (PPV), using two different parametrizations of the energy functional in the local density approximation (LDA) and the ab initio Hartree-Fock (HF) method. For the application of correlation corrections to the HF results the system is already too large. We find that even simple LDA methods are reliable alternatives to the ab initio HF method for the calculation of potential surfaces in polymers with large unit cells. The results in turn can be used to determine parameters for model Hamiltonians necessary for theoretical studies of the dynamics of nonlinear quasiparticles in the polymers. We further present the LDA band structures of PPV together with their HF and correlation (many body perturbation theory of 2nd order in Møller-Plesset partitioning, MP2) corrected counterparts. We find that the fundamental gap obtained is too large both with HF and with the correlation corrected band structure compared to experiment. However, we use only a modest correlation method and a small basis set, which already brings us to the limits of the computers available to us. The LDA gaps on the other hand are too small which, however, could be corrected with the help of self interaction corrections. None of the latter methods would lead to exceedingly large computation times.  相似文献   

19.
The structural and vibrational properties of siloxane monomers may account in the physical and chemical properties of silicone polymers. Because disiloxane (H(3)SiOSiH(3)) is the smallest molecule in the set which runs through small siloxanes like hexamethyldisiloxane (CH(3))3SiOSi(CH(3))3 to silicone polymers, its energetic, structural and vibrational features have been investigated in detail using density functional theory (B3LYP), post Hartree-Fock methods (MP2 and CCSD(T)) and basis sets up to spdfg quality. Five conformations were considered: three bent structures with C2v (double staggered, SS, and double eclipsed, EE, conformations) and Cs symmetries, and two linear forms with D3d and D3h symmetries. At all levels of theory, the relative stability was C2v(SS) approximately C2v(EE)>Cs>D3h>D3d. The difference of energy between the two C2v conformers is lower than 0.04 kcal/mol. At the highest level of theory (CCSD(T)/cc-pVQZ), the barrier to linearisation from C(2v) to D(3h) conformers was calculated at 0.43 kcal/mol, which is extremely low. Most of the structural and vibrational features of the disiloxane do not depend on the conformation of the molecule but are strongly influenced by the SiOSi angle. Anharmonic calculations allowed, without any scaling factor, an exhaustive reinvestigation of the assignments of observed wavenumbers in the infrared and Raman spectra of gaseous disiloxane. Particularly, in the gas phase spectrum, the SiOSi symmetric and antisymmetric stretches have been assigned at 599 and 1105, 596 and 1060, 527 and 1093 cm(-1) for H(3)SiOSiH(3), H(3)Si(18)OSiH(3) and D(3)SiOSiD(3), respectively. The experimental wavenumber splitting of SiOSi symmetric and antisymmetric stretches of H(3)SiOSiH(3) gave an estimation of the SiOSi angle at around 145 degrees . Ab initio methods were revealed more accurate for structural parameters, when DFT/B3LYP was enough for spectral assignments, even at the harmonic level using a single scaling factor.  相似文献   

20.
Raman spectra of cyclopropylmethyl dichlorosilane (c-C3H5)SiCl2CH3 as a liquid were recorded at 293 K and polarization data were obtained. Additional Raman spectra were recorded at various temperatures between 293 and 163 K, and intensity changes of certain bands with temperature were detected. No crystallization was ever obtained in the Raman cryostat in spite of extensive annealing. The infrared spectra have been studied as a vapour, as an amorphous solid at 78 K and as a liquid in the range 600-100 cm−1. No infrared bands present in the vapour or liquid seemed to vanish upon cooling, and the sample never formed crystals on the CsI window of an infrared cryostat.The compound exists a priori in two conformers, syn and gauche, and the experimental results suggest an equilibrium in which the gauche conformer has 1.64 kJ mol−1 lower enthalpy than syn in the liquid, leading to 20% syn at ambient temperature. Most of the syn bands were situated close to the corresponding gauche bands and it was difficult to obtain reliable ΔH values.B3LYP calculations with various basis sets and the CBS-QB3 and G2 and G3 models were employed, yielding the conformational enthalpy difference ΔH (syn-gauche) between 2.6 and 3.4 kJ mol−1. Infrared and Raman intensities, polarization ratios and vibrational frequencies for the syn and gauche conformers were calculated. Instead of scaling the calculated wavenumbers in the harmonic approximation, calculations from B3LYP/cc-pVTZ were derived in the anharmonic approximation. In most cases these values were in good agreement with the experimental results for 38 observed modes of the gauche and 8 modes of the syn conformer with a deviation of ca. 1%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号