首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Neutron crystallography was used to directly locate two protons before and after a pH‐induced two‐proton transfer between catalytic aspartic acid residues and the hydroxy group of the bound clinical drug darunavir, located in the catalytic site of enzyme HIV‐1 protease. The two‐proton transfer is triggered by electrostatic effects arising from protonation state changes of surface residues far from the active site. The mechanism and pH effect are supported by quantum mechanics/molecular mechanics (QM/MM) calculations. The low‐pH proton configuration in the catalytic site is deemed critical for the catalytic action of this enzyme and may apply more generally to other aspartic proteases. Neutrons therefore represent a superb probe to obtain structural details for proton transfer reactions in biological systems at a truly atomic level.  相似文献   

2.
Plant protease inhibitors (PIs) are generally small proteins present in high concentrations in storage tissues (tubers and seeds), and to a lower level in leaves. Even if most of them are active against serine and cysteine proteases, PIs active against aspartic proteases and carboxypeptidases have also been identified. Inhibitors of serine proteases are further classifiable in several families on the basis of their structural features. They comprise the families known as Bowman-Birk, Kunitz, Potato I and Potato II, which are the subject of review articles included in this special issue. In the present article we aim to give an overview of other families of plant PIs, active either against serine proteases or other class of proteases, describing their distribution, activity and main structural characteristics.  相似文献   

3.
BACKGROUND: Granzyme B, one of the most abundant granzymes in cytotoxic T-lymphocyte (CTL) granules, and members of the caspase (cysteine aspartyl proteinases) family have a unique cleavage specificity for aspartic acid in P1 and play critical roles in the biochemical events that culminate in cell death. RESULTS: We have determined the three-dimensional structure of the complex of the human granzyme B with a potent tetrapeptide aldehyde inhibitor. The Asp-specific S1 subsite of human granzyme B is significantly larger and less charged than the corresponding Asp-specific site in the apoptosis-promoting caspases, and also larger than the corresponding subsite in rat granzyme B. CONCLUSIONS: The above differences account for the variation in substrate specificity among granzyme B, other serine proteases and the caspases, and enable the design of specific inhibitors that can probe the physiological functions of these proteins and the disease states with which they are associated.  相似文献   

4.
《中国化学快报》2021,32(11):3479-3482
Recent studies have shown that CTP may act as a ligand to regulate the activity of its target proteins in many biological processes. However, proteome-wide identification of CTP-binding proteins remains challenging. Here, we employed a biotinylated CTP affinity probe coupled with stable isotope labeling by amino acids in cell culture (SILAC)-based quantitative proteomics approach to capture, identify and quantify CTP-binding proteins in human cells. By performing two types of competitive SILAC experiments with high vs. low concentrations of CTP probe (100 vs. 10 µmol/L) or with CTP probe in the presence of free CTP, we identified 90 potential CTP-binding proteins which are involved in a variety of biological processes, including protein folding, nucleotide binding and cell-cell adhesion. Together, we developed a chemical proteomic method for uncovering the CTP-binding proteins in human cells, which could be widely applicable for profiling CTP-binding proteins in other biological samples.  相似文献   

5.
SUMO is a post‐translational modifier critical for cell cycle progression and genome stability that plays a role in tumorigenesis, thus rendering SUMO‐specific enzymes potential pharmacological targets. However, the systematic generation of tools for the activity profiling of SUMO‐specific enzymes has proven challenging. We developed a diversifiable synthetic platform for SUMO‐based probes by using a direct linear synthesis method, which permits N‐ and C‐terminal labelling to incorporate dyes and reactive warheads, respectively. In this manner, activity‐based probes (ABPs) for SUMO‐1, SUMO‐2, and SUMO‐3‐specific proteases were generated and validated in cells using gel‐based assays and confocal microscopy. We further expanded our toolbox with the synthesis of a K11‐linked diSUMO‐2 probe to study the proteolytic cleavage of SUMO chains. Together, these ABPs demonstrate the versatility and specificity of our synthetic SUMO platform for in vitro and in vivo characterization of the SUMO protease family.  相似文献   

6.
Serum is a difficult matrix for the identification of biomarkers by mass spectrometry (MS). This is due to high-abundance proteins and their complex processing by a multitude of endogenous proteases making rigorous standardisation difficult. Here, we have investigated the use of defined exogenous reporter peptides as substrates for disease-specific proteases with respect to improved standardisation and disease classification accuracy. A recombinant N-terminal fragment of the Adenomatous Polyposis Coli (APC) protein was digested with trypsin to yield a peptide mixture for subsequent Reporter Peptide Spiking (RPS) of serum. Different preanalytical handling of serum samples was simulated by storage of serum samples for up to 6 h at ambient temperature, followed by RPS, further incubation under standardised conditions and testing for stability of protease-generated MS profiles. To demonstrate the superior classification accuracy achieved by RPS, a pilot profiling experiment was performed using serum specimens from pancreatic cancer patients (n = 50) and healthy controls (n = 50). After RPS six different peak categories could be defined, two of which (categories C and D) are modulated by endogenous proteases. These latter are relevant for improved classification accuracy as shown by enhanced disease-specific classification from 78% to 87% in unspiked and spiked samples, respectively. Peaks of these categories presented with unchanged signal intensities regardless of preanalytical conditions. The use of RPS generally improved the signal intensities of protease-generated peptide peaks. RPS circumvents preanalytical variabilities and improves classification accuracies. Our approach will be helpful to introduce MS-based proteomic profiling into routine laboratory testing.  相似文献   

7.
2-oxoglutarate (2-OG)-dependent oxygenases have diverse roles in human biology. The inhibition of several 2-OG oxygenases is being targeted for therapeutic intervention, including for cancer, anemia, and ischemic diseases. We report a small-molecule probe for 2-OG oxygenases that employs a hydroxyquinoline template coupled to a photoactivable crosslinking group and an affinity-purification tag. Following studies with recombinant proteins, the probe was shown to crosslink to 2-OG oxygenases in human crude cell extracts, including to proteins at endogenous levels. This approach is useful for inhibitor profiling, as demonstrated by crosslinking to the histone demethylase FBXL11 (KDM2A) in HEK293T nuclear extracts. The results also suggest that small-molecule probes may be suitable for substrate identification studies.  相似文献   

8.
We propose a new approach to express SIMS depth profiling on a TOF.SIMS‐5 time‐of‐flight mass spectrometer. The approach is based on the instrument capability to independently perform raster scans of sputter and probe ion beams. The probed area can be much smaller than the diameter of a sputter ion beam, like in the AES depth profiling method. This circumstance alleviates limitations on the sputter beam–raster size relation, which are critical in other types of SIMS, and enables analysis on a curved‐bottomed sputter crater. By considerably reducing the raster size, it is possible to increase the depth profiling speed by an order of magnitude without radically degrading the depth resolution. A technique is proposed for successive improvement of depth resolution through profile recovery with account for the developing curvature of the sputtered crater bottom in the probed area. Experimental study of the crater bottom form resulted in implementing a method to include contribution of the instrumental artifacts in a nonstationary depth resolution function within the Hofmann's mixing–roughness–information depth model. The real‐structure experiment has shown that the analysis technique combining reduction of a raster size with a successive nonstationary recovery ensures high speed of profiling at ~100 µm/h while maintaining the depth resolution of about 30 nm at a 5 µm depth. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
Structural studies of proteins by hydrogen/deuterium exchange coupled to mass spectrometry (DXMS) require the use of proteases working at acidic pH and low temperatures. The spatial resolution of this technique can be improved by combining several acidic proteases, each generating a set of different peptides. Three commercial aspartic proteases are used, namely, pepsin, and proteases XIII and XVIII. However, given their low purity, high enzyme/protein ratios have to be used with proteases XIII and XVIII. In the present work, we investigate the activity of two alternative acidic proteases from Plasmodium falciparum under different pH and temperature conditions. Peptide mapping of four different proteins after digestion with pepsin, plasmepsin 2 (PSM2), and plasmepsin 4 (PSM4) were compared. PSM4 is inactive at pH 2.2 and 0°C, making it unusable for DXMS studies. However, PSM2 showed low but reproducible activity under DXMS conditions. It displayed no substrate specificity and, like pepsin, no strict sequence specificity. Altogether, these results show that PSM2 but not PSM4 is a potential new tool for DXMS studies.  相似文献   

10.
 A common problem in depth profile measurement is the calibration of the depth scale. The new technique of sputter assisted electron probe microanalysis offers the possibility of calculating the composition as well as the depth scale solely from the acquired X-ray intensity data without further information, e.g. sputter rates. To achieve a depth resolution that is smaller than the depth of information of the electron probe, i.e. 0.1–1 μm, special deconvolution algorithms must be applied to the acquired data. To assess the capabilities of this new technique it was applied to a Ti/Al/Ti multilayer on Si under different measurement conditions. Quantitative depth profiles were obtained by application of a deconvolution algorithm based on maximum entropy analysis. By comparison of these profiles with AES depth profiles and AFM roughness measurements, it was shown that the limiting factor to the achievable depth resolution is the occurrence of surface roughening induced by the sputtering process rather than the relatively large depth of information of the electron probe. We conclude that for certain applications sputter-assisted EPMA can be regarded as a valid depth profiling technique with a depth resolution in the nm range.  相似文献   

11.
12.
Profiling membrane proteins would facilitate revealing disease mechanism and discovering new drug targets as they play essential roles in cellular signaling, substrate transport, and cell adhesion. However, the analysis of membrane proteins still remains a challenge due to their high hydrophobicity, as well as the suppression effect of high abundant soluble proteins. In this work, to achieve a membrane proteome profiling, a sample preparation strategy based on sequential extraction at the protein level assisted by a range of extraction reagents with different dissolving capabilities, followed by nano-RPLC-ESI-MS/MS analysis was developed and applied for HeLa cell line analysis. It was found that with progressively harsher extraction reagents (i.e., 2 M NaCl, 4 M urea, 0.1 M Na2CO3, and 10% 1-dodecyl-3- methyl-imidazolium chloride (C12ImCl) performed, much more high hydrophobic proteins and low abundant proteins were identified. With our developed strategy, 5553 of the identified proteins (4419 gene products) were annotated to be membrane proteins and 2573 proteins (2183 gene products) have at least one transmembrane domain, to our best knowledge, which is the most comprehensive membrane proteome dataset for HeLa cell line. Notably, 110 of the identified membrane proteins were discovered in the “missing proteins” list referred to those in the neXtProt database. All above results indicated that our strategy has great potential to tackle the difficult but relevant task of identifying and profiling membrane proteins.  相似文献   

13.
Peak profiling and high-performance columns containing immobilized human serum albumin (HSA) were used to study the interaction kinetics of chiral solutes with this protein. This approach was tested using the phenytoin metabolites 5-(3-hydroxyphenyl)-5-phenylhydantoin (m-HPPH) and 5-(4-hydroxyphenyl)-5-phenylhydantoin (p-HPPH) as model analytes. HSA columns provided some resolution of the enantiomers for each phenytoin metabolite, which made it possible to simultaneously conduct kinetic studies on each chiral form. The dissociation rate constants for these interactions were determined by using both the single flow rate and multiple flow rate peak profiling methods. Corrections for non-specific interactions with the support were also considered. The final estimates obtained at pH 7.4 and 37°C for the dissociation rate constants of these interactions were 8.2-9.6 s(-1) for the two enantiomers of m-HPPH and 3.2-4.1 s(-1) for the enantiomers of p-HPPH. These rate constants agreed with previous values that have been reported for other drugs and solutes that have similar affinities and binding regions on HSA. The approach used in this report was not limited to phenytoin metabolites or HSA but could be applied to a variety of other chiral solutes and proteins. This method could also be adopted for use in the rapid screening of drug-protein interactions.  相似文献   

14.
We report on the design, synthesis and assessment of a novel biaryl-linked (BArL) molecular probe for the exploration of low-abundant target proteins for bioactive compounds based on the activity based protein profiling (ABPP) approach. Surprisingly, the performance of the BArL probe was better than that of the stepwise tagging approach that is considered to be the most effective method used in ABPP study.  相似文献   

15.
Fluorobenzene probes for protein profiling through selective cysteine labeling have been developed by rational reactivity tuning. Tuning was achieved by selecting an electron‐withdrawing para substituent in combination with variation of the number of fluorine substituents. Optimized probes chemoselectively arylated cysteine residues in proteins under aqueous conditions. Probes linked to azide, biotin, or a fluorophore were applicable to labeling of eGFP and albumin. Selective inhibition of cysteine proteases was also demonstrated with the probes. Additionally, probes were tuned for site‐selective labeling of cysteine residues and for activity‐based protein profiling in cell lysates.  相似文献   

16.
We present the results of a VAMAS (Versailles project on Advanced Materials and Standards) interlaboratory study on organic depth profiling, in which twenty laboratories submitted data from a multilayer organic reference material. Individual layers were identified using a range of different sputtering species (C60n+, Cs+, SF5+ and Xe+), but in this study only the C60n+ ions were able to provide truly ‘molecular’ depth profiles from the reference samples. The repeatability of profiles carried out on three separate days by participants was shown to be excellent, with a number of laboratories obtaining better than 5% RSD (relative standard deviation) in depth resolution and sputtering yield, and better than 10% RSD in relative secondary ion intensities. Comparability between laboratories was also good in terms of depth resolution and sputtering yield, allowing useful relationships to be found between ion energy, sputtering yield and depth resolution. The study has shown that organic depth profiling results can, with care, be compared on a day‐to‐day basis and between laboratories. The study has also validated three approaches that significantly improve the quality of organic depth profiling: sample cooling, sample rotation and grazing angles of ion incidence. © Crown copyright 2010.  相似文献   

17.
N,N′-diBoc-dityrosine (DBDY), which was synthesized by the oxidative C–C coupling of 2 N-Boc-l-tyrosine molecules, was conjugated with two isoniazid (INH) molecules. Due to the quenching effect of INH, DBDY–(INH)2 lacks the fluorescence of DBDY. As such, it was tested for use in the detection of proteases by measuring fluorescence recovery. In this study, serine proteases (chymotrypsin, trypsin, subtilisin, and proteinase K), metalloproteases (thermolysin and carboxypeptidase A, dispase, and collagenase), aspartic proteases (pepsin and aspergillopepsin) and cysteine proteases (papain and chymopapain) were chosen. Reported optimum assay conditions were chosen for each enzyme. Only papain and chymopapain catalyzed the hydrolysis of DBDY–(INH)2 and led to fluorescence recovery, possibly due to their extensive binding sites and the INH-mediated inhibition of metalloproteases and aspartic proteases.  相似文献   

18.
ProteinChip surface‐enhanced laser desorption/ionization technology and magnetic beads‐based ClinProt system are commonly used for semi‐quantitative profiling of plasma proteome in biomarker discovery. Unfortunately, the proteins/peptides detected by MS are non‐recoverable. To obtain the protein identity of a MS peak, additional time‐consuming and material‐consuming purification steps have to be done. In this study, we developed a magnetic beads‐based proteomic fingerprinting method that allowed semi‐quantitative proteomic profiling and micropreparative purification of the profiled proteins in parallel. The use of different chromatographic magnetic beads allowed us to obtain different proteomic profiles, which were comparable to those obtained by the ProteinChip surface‐enhanced laser desorption/ionization technology. Our assays were semi‐quantitative. The normalized peak intensity was proportional to concentration measured by immunoassay. Both intra‐assay and inter‐assay coefficients of variation of the normalized peak intensities were in the range of 4–30%. Our method only required 2 μL of serum or plasma for generating enough proteins for semi‐quantitative profiling by MALDI‐TOF‐MS as well as for gel electrophoresis and subsequent protein identification. The protein peaks and corresponding gel spots could be easily matched by comparing their intensities and masses. Because of its high efficiency and reproducibility, our method has great potentials in clinical research, especially in biomarker discovery.  相似文献   

19.
Parallel Screening has been introduced as an in silico method to predict the potential biological activities of compounds by screening them with a multitude of pharmacophore models. This study presents an early application example employing a Pipeline Pilot-based screening platform for automatic large-scale virtual activity profiling. An extensive set of HIV protease inhibitor pharmacophore models was used to screen a selection of active and inactive compounds. Furthermore, we aimed to address the usually critically eyed point, whether it is possible in a parallel screening system to differentiate between similar molecules/molecules acting on closely related proteins, and therefore we incorporated a collection of other protease inhibitors including aspartic protease inhibitors. The results of the screening experiments show a clear trend toward most extensive retrieval of known active ligands, followed by the general protease inhibitors and lowest recovery of inactive compounds.  相似文献   

20.
对基因编码的蛋白质进行系统分析可以为注释基因组信息和研究疾病发生机理提供参考.质谱因其高通量、高灵敏度和高精度等特点成为蛋白质表达谱研究的核心技术.过去10年,质谱技术的发展大大促进了蛋白质表达谱的研究.本文综述了蛋白质表达谱的定性和定量研究进展,并展望了进一步的研究方向.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号