首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Beryllium (ca. 10?2?10?4 M) is determined by adding excess of 1,2-phenylenediamine-N,N,N′, N′-tetraacetic acid (PhDTA, H4L) and back-titrating with copper(II); arsenazo-I serves as indicator. Formation constants of BeL and BeHL were determined by potentiometry: log KBeL=6.48±0.02 and log KHBeHL=3.48±0.03 (25°C, I=1 M in NaClO4). Expressions for the titration curve are given together with theoretical errors.  相似文献   

2.
《Tetrahedron: Asymmetry》1999,10(13):2627-2633
In our series of nucleophilic substitution reactions on N,N-disulfonylimides we hereby report the preparation and the nucleophilic substitution of the N,N-1,2-naphthalenedisulfonylimide derivative 1a of the chiral amine 1. The disulfonimide was prepared by using the disulfonyl chloride reagent. Nucleophilic substitution of 1a by KNO2 and azide afforded the corresponding alcohol 2 and the azide product 3 with, respectively, 63 and 70% inversion of configuration. The stereochemical results are compared with previously reported results for a series of N,N-disulfonylimides showing that the degree of inversion of 1a is lower than for the other N,N-disulfonylimides.  相似文献   

3.
Reactions of aquapentachloroplatinic acid, (H3O)[PtCl5(H2O)]·2(18C6)·6H2O ( 1 ) (18C6 = 18‐crown‐6), and H2[PtCl6]·6H2O ( 2 ) with heterocyclic N, N donors (2, 2′‐bipyridine, bpy; 4, 4′‐di‐tert‐butyl‐2, 2′‐bipyridine, tBu2bpy; 1, 10‐phenanthroline, phen; 4, 7‐diphenyl‐1, 10‐phenanthroline, Ph2phen; 2, 2′‐bipyrimidine, bpym) afforded with ligand substitution platinum(IV) complexes [PtCl4(N∩N)] (N∩N = bpy, 3a ; tBu2bpy, 3b ; Ph2phen, 5 ; bpym, 7 ) and/or with protonation of N, N donor yielding (R2phenH)2[PtCl6] (R = H, 4a ; Ph, 4b ) and (bpymH)+ ( 8 ). With UV irradiation Ph2phen and bpym reacted with reduction yielding platinum(II) complexes [PtCl2(N∩N)] (N∩N = Ph2phen, 6 ; bpym, 9 ). Identities of all complexes were established by microanalysis as well as by NMR (1H, 13C, 195Pt) and IR spectroscopic investigations. Molecular structures of [PtCl4(bpym)]·MeOH ( 7 ) and [PtCl2(Ph2phen)] ( 6 ) were determined by X‐ray diffraction analyses. Differences in reactivity of bpy/bpym and phen ligands are discussed in terms of calculated structures of complexes [PtCl5(N∩N)] with monodentately bound N, N ligands (N∩N = bpy, 10a ; phen, 10b ; bpym, 10c ).  相似文献   

4.
The 14N nuclear quadrupole interaction tensor PN measured by ENDOR in Cu(II) doped l-alanine is analyzed in terms of the Townes and Dailey theory assuming a tetrahedrally bonded N atom. The results of this analysis are compared with those for the 14N in pure l-alanine and it is found that the principal directions of the PN tensor are drastically changed upon metal complexation as a consequence of the higher electron affinity of Cu(II) with respect to C and H. Comparison of the corresponding bond populations in pure and Cu(II) doped l-alanine indicates that the Cu draws 0.11 more electron from the N than the substituted H atom.  相似文献   

5.
o-Phenylenediamine reacts with 2-formyl-, 2-acetyl-, or 2-benzoylpyridine in ethanol in the presence of cobalt, nickel, copper, or zinc chlorides to form monomeric complexes ML1–3Cl2·nH2O {M = Co, Ni, Cu, Zn; L1 = N 1,N 2-bis(pyridin-2-ymethylidene)benzene-1,2-diamine, L2 = N 1,N 2-bis(pyridin-2-ylethylidene) benzene-1,2-diamine, L3 = N 1,N 2-bis[phenyl(pyridin-2-yl)methylidene]benzene-1,2-diamine; n = 0–3}. The condensation products (L1–L3) act in the complexes as tetradentate N,N,N,N-ligands. Thermolysis of the complexes occurs in two stages: dehydration (70–95°C) and complete degradation (320–450°C). At concentrations of 10?5–10?7 M, the complexes inhibit in vitro growth and proliferation of HL-60 human promyelocytic leukemia cells.  相似文献   

6.
SrTaO2N heated in a helium atmosphere began to release nitrogen of approximately 30 at% at 950 °C while maintaining the perovskite structure and its color changed from orange to dark green. Then it decomposed above 1200 °C to a black mixture of Sr1.4Ta0.6O2.73, Ta2N, and Sr5Ta4O15. The second decomposition was not clearly observed when SrTaO2N was heated in a nitrogen atmosphere below 1550 °C. After heating at 1500 °C for 3 h under a 0.2 MPa nitrogen atmosphere, the perovskite product became dark green and conductive. Structure refinement results suggested that the product was a mixture of tetragonal and cubic perovskites with a decreased ordering of N3−/O2−. The sintered body was changed to an n-type semiconductor after a partial loss of nitrogen to be reduced from the originally insulating SrTaO2N perovskite lattice. LaTiO2N was confirmed to have a similar cis-configuration of the TiO4N2 octahedron as that of TaO4N2 in SrTaO2N. It also released some of its nitrogen at 800 °C changing its color from brown to black and then decomposed to a mixture of LaTiO3, La2O3, and TiN at 1100 °C. These temperatures are lower than those in SrTaO2N.  相似文献   

7.
N,N-Bis(halomethyldimethydimethylsilyl)acetamides, MeCON(SiMe2CH2X)2, (X = Cl, Br) were prepared by transsilylation of N,O-bis(trimethylsilyl)acetamide with halomethyldimethylchlorosilane. With water and methanol, instead of the expected SiN cleavage, nucleophilic substitution of halogen took place and the products were 1-acetyl-2,2,6,6-tetramethyldisilamorpholine and N,N-bismethoxymethyldimethylsilyl)acetamide respectively. These compounds were shown by IR and 1H NMR spectra to have the N,N-disilylacetamide structure. Thermodynamic, kinetic constants of hindered rotation around the CN bond in these compounds were determined from their temperature-variable 1H NMR spectra. The main products of thermolysis of the silylamides are α,ω-dichloropolydimethylsiloxanes and polydimethylcyclosiloxanes.  相似文献   

8.
The title complex, [Cu(C12H9N2O)(C2H3O2)(C12H10N2O)], is a neutral CuII complex with a primary N3O2 coordination sphere. The Cu centre coordinates to both a deprotonated and a neutral molecule of N‐phenylpyridine‐2‐carboxamide and also to an acetate anion. The coordination around the metal centre is asymmetric, the deprotonated ligand providing two N donor atoms [Cu—N = 1.995 (2) and 2.013 (2) Å] and the neutral ligand providing one N and one O donor atom to the coordination environment [Cu—N = 2.042 (2) Å and Cu—O = 2.2557 (19) Å], the fifth donor being an O atom of the acetate ion [Cu—O = 1.9534 (19) Å]. The remaining O atom from the acetate ion can be considered as a weak donor atom [Cu—O = 2.789 (2) Å], conferring to the Cu complex an asymmetric octahedral geometry. The crystal structure is stabilized by intermolecular N—H...O, C—H...O and C—H...π interactions.  相似文献   

9.
Treatment of 1-methoxynaphthalene (MXNH) with n-butyllithium in a diethyl ether/n-hexane solution gives 1-methoxynaphthalene-8-lithium (MXNLi) in 30% yield as an insoluble material. This compound reacts with PdCl2(SEt2)2 to give bis(1-methoxynaphthalene-8-C,O)palladium(II) (I)_and with PtCl2(SEt2)2 to give cis- and trans-(1-methoxynaphthalene-8-C,O)(1-methoxynaphthalene-8-C)(diethylsulfide)platinum(II) (II), which are non-rigid molecules in solution. With the cyclopalladated dimers [{Pd(CN)Cl2}2], MXNLi gives the palladobicyclic compounds: (N∩C)Pd(C∩O) (III). An X-ray diffraction study of compound IIIa where N∩N = 8-methylquinoline-C,N reveals the planarity of the molecule, shows that it has a cis configuration with respect to the PdC bonds, and confirms that the oxygen atom of MXN is bonded to palladium: PdO 2.236(4) Å. The geometry of IIIa is maintained in solution, whereas the corresponding compounds IIIb and IIIc in which N∩C is benzo[h]quinoline-9-C,N and N,N-dimethyl-1-naphthylamine-8-C,N, respectively, appear to be mixtures of cis and trans isomers in solution. With PMe2Ph I and II give trans-Pd(MXN)2(PMe2Ph)2 and cis-Pt(MNX)2(PMe2Ph)2, respectively, in which the methoxynaphthalene is bound to the metals via the 8-carbon of the naphthalene ring. Only one phosphine ligand adds to compounds IIIb and IIIc with displacement of the O → Pd bond. One carbon monoxide ligand can be added to the platinum compound II to give Pt(MXN)2(SEt2)CO which in solution exists as two isomers in equilibrium.  相似文献   

10.
1,8-Naphthyridine (napy) and terpyridine-analogous (N,N,C) tridentate ligands coordinated ruthenium (II) complexes, [RuL(napy-κ2N,N′) (dmso)](PF6)2 (1: L=L1=N″-methyl-4′-methylthio-2,2′:6′,4″-terpyridinium, 2: L = L2 = N″-methyl-4′-methylthio-2,2′:6′,3″-terpyridinium) were prepared and their chemical and electrochemical properties were characterized. The structure of complex 1 was determined by X-ray crystallographic study, showing that it has a distorted octahedral coordination style. The cyclic voltammogram of 1 in DMF exhibited two reversible ligand-localized redox couples. On the other hand, the CV of 2 shows two irreversible cathodic peaks, due to the Ru-C bond of 2 containing the carbenic character. The IR spectra of 1 in CO2-saturated CH3CN showed the formation of Ru-(η1-CO2) and Ru-CO complexes under the controlled potential electrolysis of the solution at −1.44 V (vs. Fc/Fc+). The electrochemical reduction of CO2 catalyzed by 1 at −1.54 V (vs. Fc/Fc+) in DMF-0.1 M Me4NBF4 produced CO with a small amount of HCO2H.  相似文献   

11.
Polynitrides are intrinsically thermodynamically unstable at ambient conditions and require peculiar synthetic approaches. Now, a one-step synthesis of metal–inorganic frameworks Hf4N20⋅N2, WN8⋅N2, and Os5N28⋅3 N2 via direct reactions between elements in a diamond anvil cell at pressures exceeding 100 GPa is reported. The porous frameworks (Hf4N20, WN8, and Os5N28) are built from transition-metal atoms linked either by polymeric polydiazenediyl (polyacetylene-like) nitrogen chains or through dinitrogen units. Triply bound dinitrogen molecules occupy channels of these frameworks. Owing to conjugated polydiazenediyl chains, these compounds exhibit metallic properties. The high-pressure reaction between Hf and N2 also leads to a non-centrosymmetric polynitride Hf2N11 that features double-helix catena-poly[tetraz-1-ene-1,4-diyl] nitrogen chains [−N−N−N=N−].  相似文献   

12.
1H, 13C, 15N and 17O NMR chemical shifts are used for the characterization of the intramolecular interactions in several nitramines of the Me2N-G-NO2 type. The charge of lone electron pair of the amino group in N,N-dimethylnitramine, N,N-dimethyl-2-nitroethenamine, N,N-dimethyl-p-nitroaniline, 4-nitro-β-dimethylaminostyrene, 4-N,N-dimethylamino-β-nitrostyrene, 4-(N,N-dimethylamino)-4′-nitrobiphenyl, and 4-(N,N-dimethylamino)-4′-nitrostilbene is transferred not only to the nitro oxygens, but also to the vinylene and benzene carbons of the G spacer and to N-methyl carbons as well. Decreased nuclear shielding is found to be qualitatively related to the decreased atomic charge around a nucleus. This finding was further verified and quantified by comparison of the NMR data with those obtained by ab initio quantum chemical calculations. 17O NMR chemical shift changes seem to be more significant when the interacting NMe2 and NO2 groups are separated by a short spacer. On the other hand, 15N NMR chemical shifts suggest that a decrease of the charge at the amino nitrogen is not related to the length of the spacer alone. A lack of the linear dependence between the 17Onitro and 15Namino chemical shifts suggests that the charge lost by the amino nitrogen was only partially gained by the oxygens in the nitro group. The increased shieldings of the aryl carbons in 4-(N,N-dimethylamino)-4′-nitrobiphenyl indicate that atoms of the p,p-biphenylene spacer also gain some charge originating from the amino nitrogen. 3 J H,H spin–spin coupling constant shows that among different vinylene compounds, the charge transfer to the nitro group is practically effective only in N,N-dimethyl-2-nitroethenamine where the bond between the vinylene carbons is significantly of low order by character. The calculated Natural Population Analysis (NPA) data confirms that except the nitro oxygens, other atoms that receive the negative charge lost by NMe2 in the compounds studied are the aryl and N-methyl carbons.  相似文献   

13.
Poly(N1,N3-dimethylbenzimidazolium) (PDMBI) salt and poly(N1-methylbenzimidazole) (PMMBI) were synthesized by methylation of commercial polybenzimidazole [poly-2,2′-(m-phenylene)-5,5′-bibenzimidazole (PBI)]. First, the N-lithium salt of polybenzimidazole was formed by treating polybenzimidazole solution of 1-methyl-2-pyrolidinone (NMP) with lithium hydride at 80°C for 18 h. Ninety percent substitution of PMMBI was obtained by treating the N-lithium salt of PBI with equimolar ratio of iodomethane at room temperature. Upon addition of excess iodomethane to the lithium salt of PBI at 80°C, a polymer was formed that showed 100% substitution on the N1 nitrogen and about 30% substitution of the methyl group on the N3 nitrogen in the form of N1,N3-dimethylbenzimidazolium iodide salt [PDMBI (30%)]. The content of the benzimidazolium iodide salt was increased to about 90% by dissolving PDMBI (30%) in dimethyl sulfoxide (DMSO) and re-treating with excess iodomethane at 80°C overnight. The modified PBI polymers were characterized by NMR and FTIR. The modified PBI differed in solubility from PBI. PMMBI could be easily dissolved in NMP and PDMBI in DMSO at room temperature. The solution of PDMBI could be mixed with water in all proportions without precipitation. PDMBI could be also dissolved directly in a mixture of DMSO and water (1 : 1). Typical polyelectrolyte behavior of viscosity was found in solution of PDMBI (30%) and PDMBI (90%) when DMSO and a mixture of DMSO and water were used as solvents. A salt effect on viscosity was also found in the mixed solvent solution. Thermogravimetric analysis (TGA) showed that the methyl group on the imidazole ring was unstable above 180°C under nitrogen. When PDMBI was heated under nitrogen, one of the methyl groups was lost with the counterion to result in a neutral PMMBI. © 1993 John Wiley & Sons, Inc.  相似文献   

14.
Stable potassium enolates of N,N‐diethylacetamide [α‐potassio‐N,N‐diethylacetamide ( 1 )], N,N‐diethylpropionamide [α‐potassio‐N,N‐diethylpropionamide ( 2 )], and N,N‐diethylisobutyramide [α‐potassio‐N,N‐diethylisobutyramide ( 3 )] were prepared by the proton abstraction of the corresponding N,N‐diethylamides with diphenylmethylpotassium (Ph2CHK) or potassium naphthalenide in THF. The relative nucleophilicity of 1 – 3 was estimated to be in the order of 1 < 3 < 2 from the results of the alkylation reaction with methyl iodide. N,N‐diethylacetamide transferred its α‐proton to 2 quantitatively in THF at 0 °C, whereas no reaction occurred between N,N‐diethylisobutyramide and 2 ; this indicated the relative basicity to be 1 < 2 ~ 3 . Anionic polymerizations of N,N‐diethylacrylamide (DEA) and methyl methacrylate were quantitatively initiated with 2 in THF at ?78 °C, whereas the initiation efficiencies of 2 for styrene and 2‐vinylpyridine were about 2 and 67%, respectively. The initiation of DEA with 1 – 3 at ?78 or 0 °C in THF gave poly (DEA)s having broad molecular weight distributions (MWDs; Mw/Mn = 2) and ill‐controlled molecular weights. In contrast, poly(DEA)s of narrow MWDs (Mw/Mn < 1.2) and predicted Mn's were obtained with 2 in the presence of diethylzinc (Et2Zn) at ?78 °C, whereas the initiations with 1 /Et2Zn and 3 /Et2Zn at ?78 °C resulted in poor control of the molecular weights. At the higher temperature of 0 °C, all the binary initiator systems ( 1 – 3 /Et2Zn) induced controlled polymerizations of DEA in terms of the conversion, molecular weight, and MWD. The poly(DEA)s produced with 1 – 3 /Et2Zn at 0 °C showed mr‐rich configurations (mr = 76–89%), as observed for the poly(DEA) generated with Ph2CHK/Et2Zn. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1260–1271, 2007  相似文献   

15.
Synthesis and Structure of Nitridoborate Nitrides Ln4(B2N4)N (Ln = La, Ce) of the Formula Type Ln3+x(B2N4)Nx (x = 0, 1, 2) The missing member of the formula type Ln3+x(B2N4)Nx with x = 1 was synthesized and characterized for Ln = La and Ce. According to the single‐crystal X‐ray structure solution Ce4(B2N4)N crystallizes in the space group C2/m (Z = 2) with the lattice parameters a = 1238.2(1) pm, b = 357.32(3) pm, c = 905.21(7) pm and β = 129.700(1)°. The anisotropic structure refinement converged at R1 = 0.039 and wR2 = 0.099 for all independent reflections. A powder pattern of La4(B2N4)N was indexed isotypically with a = 1260.4(1) pm, b = 366.15(3) pm, c = 919.8(1) pm and β = 129.727(6)°. A structure rational for nitridoborates and nitridoborate nitrides containing B2N4 ions with the general formula Ln3+x(B2N4)Nx with x = 0, 1, 2 is presented.  相似文献   

16.
The zero-valent palladium in [Pd(C4H2N2)(C22H24N2)] is coordinated to two imine N atoms of a derivatized camphor ligand, and to the olefinic C atoms of a π-bonded fumaro­nitrile group. The N—Pd—N bite angle of 77.31 (9)° is similar to angles observed in other zero-valent palladium di­iminoalkene species. The asymmetry of the camphor moiety leads to two different orientations of the N-aryl groups relative to the PdN2 plane [C=N—C—C torsion angles of 102.4 (4) and 39.4 (4)°].  相似文献   

17.
Phase relations at 1050°C have been determined for M-phase solid solutions in the LiO0.5-NbO2.5-TiO2 ternary phase system by the quench method. Rietveld analysis has been used to help determine phase boundaries and to study structure composition relations. The M-phases have trigonal structures based on intergrowth of corundum-like layers, [Ti2O3]2+, with slabs of (N−1) layers of LiNbO3-type parallel to (0001). Ideal compositions are defined along the pseudobinary join LiNbO3-Li4Ti5O12 by the homologous series formula LiNNbN−4Ti5O3N, N?4. Homologues with N?10 lie to the low-lithia side of the LiNbO3-Li4Ti5O12 join and show extended single-phase solid solution ranges separated by two-phase regions. The composition variations along the solid solutions are controlled by a major substitution mechanism, Li++3Nb5+↔4Ti4+, coupled with a minor substitution 4Li+↔Ti4++3□, where □=vacancy. The latter substitution results in increasing deviations from the stoichiometric compositions A2N+1O3N with increasing Ti substitution. The non-stoichiometry can be reduced by re-equilibration at lower temperatures. Expressions have been developed to describe the compositional changes along the solid solutions.  相似文献   

18.
Dihalobridged binuclear complexes [Rh(diolefin)(μ-X)]2 {diolefin = 1,5-cyclooctadiene (cod), X = Cl or Br; diolefin = norbornadiene (nbd), X = Cl}, undergo halide bridge cleavage reactions with multidentate N,N-heterocycles 1,3,5-tris(benzimidazolyl)benzene (L1H3), 1,3,5-tris(N-methylbenzimidazolyl)benzene (L2H3) and N,S-heterocycle 1,3,5-tris(benzothiazolyl)benzene (L3H3) to yield trinuclear heterocycle bridged complexes [{RhX(cod)}3(μ-LH3)] and [{RhCl(nbd)}3(μ-LH3)] (LH3 = L1H3, L2H3, L3H3). 1H NMR exchange measurements have shown resonances for olefinic protons 1″, 2″, 5″ and 6″ of cod at different chemical shifts, perhaps due to restricted Rh–N bond rotation. The olefinic and aliphatic protons would undergo exchange with each other and also with intermediate species. The exchange mechanism may be visualized to involve Rh–N bond breaking, rotation of the cod ligand of the T-shaped (three-coordinate) intermediate species followed by recomplexation. An alternate mechanism may be Rh–cod bond breaking at olefin positions 5″ and 6″, isomerisation of the T-complex such that 5″/6″ moves trans to X coupled with rotation of the heterocycle about the Rh–N bond (made easier by the reduced coordination number of the intermediate), followed by recoordination of 1″/2″ trans to N, followed by recomplexation. NMR signals from the intermediate species in one dimensional 1H, 13C and 2D NMR spectra have supported the exchange of protons.  相似文献   

19.
The new manganese tetraphosphonate, Mn[(HO3PCH2)2N(H)(CH2)4(H)N(CH2PO3)2] (1) was hydrothermally synthesized from MnCl2 and N,N,N′,N′-tetrametylphosphono-1,4-diaminobutane, (H2O3PCH2)2N-(CH2)4-N(CH2PO3H2)2. The structure was determined from single-crystal X-ray diffraction data (Mn[(HO3PCH2)2N(H)(CH2)4(H)N(CH2PO3)2], monoclinic, P21/a, with a=9.6663(1), b=9.2249(2), c=10.5452(1) pm, β=105.676(1)°, V=905.35(3)×106 pm, Z=2, R1=0.051, wR2=0.109 (all data). The structure contains the zwitter ions [(HO3PCH2)2N(H)-(CH2)4-(H)N(CH2PO3)2]2− and is built from alternating corner-linked [MnO6] and [PO3C] polyhedra forming a two-dimensional net of eight-rings. These layers are connected to a pillared structure by the diaminobutane groups. Magnetic susceptibility data confirms the presence of Mn2+ ions. Thermogravimetric measurements show a stability of 1 up to ∼290°C. Between 290°C and 345°C a one-step loss of ∼7.0% is observed, and above 345°C the continuous decomposition of the organic part of the structures takes place.  相似文献   

20.
A facile, efficient and mild synthesis of 2,6,9-tri-substituted purines is presented, starting from commercially available 2-amino-6-chloropurine, which employs sequential N9 then N2 Mitsunobu reactions as key steps. Importantly, our synthetic approach to N2-functionalization of the purine nucleus obviates the harsh conditions required by the traditional nucleophilic aromatic substitution of a 2-halo group with primary amines. Benzylic, allylic, propargylic and aliphatic alcohols all coupled in very good to excellent yields in both Mitsunobu reactions. Significantly, excellent chemoselectivity and N9-regioselectivity were observed for the first coupling, and reactions were complete within 15 min at room temperature. Our novel methodology may be readily adapted to furnish N9-mono- or N2,N9-di-functionalized guanine analogues, and the utility of our protocol is further demonstrated by the efficient synthesis of the CDK inhibitor bohemine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号