首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
Normal Coordinate Analysis of (CH3)2SO2, (CH3)2SO(NH), and (CH3)2S(NH)2 using the Method of Stepwise Coupling The qualitative assignment of the vibrational spectra of (CH3)2SO2 ( 1 ), (CH3)2SO(NH) ( 2 a ), and (CH3)2S(NH)2 ( 3 a ) and of the C and N deuterated derivatives of 2 a and 3 a is used in a normal coordinate analysis by the method of stepwise coupling. The force constants and the energy distributions are calculated in symmetry coordinates using a generalized valence force field.  相似文献   

2.
Synthesis, Structure, and Photolysis of Isocyanato Complexes of Rhenium The ReIII isocyanato complex Re(NCO)3(PMe2Ph)3 yields from the reaction of ReCl3(PMe2Ph)3 with an excess of NaOCN in EtOH. It crystallizes in the triclinic space group P 1 with a = 991.8(6), b = 1180.7(6), c = 1348.8(5) pm, α = 89.85(1)°, β = 94.12(1), γ = 111.56(1)°, Z = 2. In the mononuclear complex with an octahedral coordination of the Re atoms the phosphine and isocyanato ligands exhibit a meridional arrangement. By using a deficient amount of NaOCN the mono isocyanato complex Re(NCO)Cl2(PMe2Ph)3 is formed, and part of the educt is transformed to its isomer [(Me2PhP)3Re(μ-Cl)3Re(PMe2Ph)3]Cl3. The mono isocyanato complex forms monoclinic crystals with the space group P21/n and a = 1467.5(7), b = 1310.6(7), c = 1603.2(8) pm, β = 112.08(1)°, Z = 4. The isocyanato ligand is in trans position to a Cl atom, and the phosphine ligands are coordinated in a meridional arrangement. [(Me2PhP)3Re(μ-Cl)3Re(PMe2Ph)3]Cl3 · 2 EtOH crystallizes in the hexagonal space group P63/m with a = 1332.6(2), c = 2300.1(7) pm, Z = 2. The dinuclear complex cation occupies with its center a special position with the symmetry C3h. Photolysis of Re(NCO)Cl2(PMe2Ph)3 results in the cleavage of the isocyanato ligand with release of CO and formation of the nitrido complex ReNCl2(PMe2Ph)3. The reaction of ReNCl2(PMe2Ph)3 with NaOCN affords the complex ReN(NCO)2(PMe2Ph)3. It crystallizes in the space group P21/n with a = 943.0(3), b = 2635.2(4), c = 1212.6(5) pm, β = 109.88(1)°, Z = 4. In this nitrido complex, like in the educt, the phosphine ligands form a meridional arrangement. The nitrido ligand is in trans position to an isocyanato group. The distance Re≡N is 165.9(6) pm.  相似文献   

3.
Three amino alcohols, 3-amino-1-propanol (abbreviated as 3a1pOH), 2-amino-1-butanol (2a1bOH), and 2-amino-2-methyl-1-propanol (2a2m1pOH), were reacted with quinoline-2-carboxylic acid, known as quinaldinic acid. This combination yielded three salts, (3a1pOHH)quin (1, 3a1pOHH+ = protonated 3-amino-1-propanol, quin = anion of quinaldinic acid), (2a1bOHH)quin (2, 2a1bOHH+ = protonated 2-amino-1-butanol), and (2a2m1pOHH)quin (3, 2a2m1pOHH+ = protonated 2-amino-2-methyl-1-propanol). The 2-amino-1-butanol and 2-amino-2-methyl-1-propanol systems produced two polymorphs each, labeled 2a/2b and 3a/3b, respectively. The compounds were characterized by X-ray structure analysis on single-crystal. The crystal structures of all consisted of protonated amino alcohols with NH3+ moiety and quinaldinate anions with carboxylate moiety. The used amino alcohols contained one OH and one NH2 functional group, both prone to participate in hydrogen bonding. Therefore, similar connectivity patterns were expected. This proved to be true to some extent as all structures contained the NH3+∙∙∙OOC heterosynthon. Nevertheless, different hydrogen bonding and π∙∙∙π stacking interactions were observed, leading to distinct connectivity motifs. The largest difference in hydrogen bonding occurred between polymorphs 3a and 3b, as they had only one heterosynton in common.  相似文献   

4.
Polysulfonyl Amines. XXXVII. Preparation of Mercury Dimesylamides. Crystal and Molecular Structures of Hg[N(SO2CH3)2]2, Hg[{N(SO2CH3)2}2(DMSO)2], and Hg[{N(SO2CH3)2}2(HMPA)] Hg[N(SO2CH3)2]2 ( 1 ) and Hg2[N(SO2CH3)2]2 ( 2 a ) are formed as colourless, sparingly soluble precipitates when solutions of Hg(NO3)2 or Hg2(NO3)2 in dilute nitric acid are added to an aqueous HN(SO2CH3)2 solution. By a similar reaction, Hg2[N(SO2C6H4 ? Cl? 4)2]2 is obtained. 1 forms isolable complexes of composition Hg[N(SO2CH3)2]2 · 2 L with L = dimethyl sulfoxide (complex 3 a ), acetonitrile, dimethyl formamide, pyridine or 1,10-phenanthroline and a (1/1) complex Hg[N(SO2CH3)2]2 · HMPA ( 4 ) with hexamethyl phosphoramide. Attempted complexation of 2 a with some of these ligands induced formation of Hg0 and the corresponding HgII complexes. Crystallographic data (at -95°C) are for 1: space group 141/a, a = 990.7(2), c = 2897.7(8) pm, V = 2.844 nm3, Z = 8, Dx = 2.545Mgm?3; for 4a: space group P1 , a = 767.8(2), b = 859.2(2), c = 925.2(2)pm α = 68.44(2), β = 86.68(2), γ = 76.24(2)°, V = 0.551nm3, Z = 1, Dx = 2.113 Mgm?3; for 4: space group P21/c, a = 1041.3(3), b = 1545.4(3), c = 1542.5(3) pm, β = 100.30(2)°, V = 2.474nm3, Z = 4, Dx = 1.944Mgm3. The three compounds form molecular crystals. The molecular structures contain a linear or approximately linear, covalent NHgN moiety; the Hg? N distances and N? Hg? N angles are 206.7(4) pm and 176.3(2)° for 1, 207.2(2) pm and 180.0° for 3a, 205.7(4)/206.7(4) pm and 170.5(1)° for 4. In the complexes 3a and 4, the 0-ligands are bonded to the Hg atoms perpendicularly to the N? Hg? N axes, leading in 3a to a square-planar trans-(N2O2) coordination with Hg? 0 261.2(2) pm and N? Hg? O 92.3(1)/87.7(1)°, in 4 to a slightly distorted T-shaped (N2O) geometry with Hg? 0 246.2(4)pm and N? Hg? 0 96.7(1)/92.0(1)°. In all three structures, the primary coordination is extended to a severely distorted (N2O4) hexacoordination by the appropriate number of secondary, inter- and/or intramolecular Hg…?0 inter-actions (0 atoms from sulfonyl groups, Hg…?O distances in the range 280—300pm). The intramolecular Hg…?O interactions give rise to nearly planar four-membered [HgNSO] rings. The molecule of 1 has a two-fold axis through the bisector of the N? Hg? N angle, the molecule of 3a an inversion center at the Hg atom. The molecule of 4 has no symmetry.  相似文献   

5.
Diamino-di-tert-butylsilanes - Building Blocks for Cyclic (SiN)2, (SiNBN)2, (SiN2Sn), and Spirocyclic (SiN2)2Si, (SiN2Sn)2S Compounds The aminochlorosilanes (Me3C)2SiClNHR ( 1 : R?H, 2 : R?Me) are obtained by the ammonolysis ( 1 ) respectively aminolysis ( 2 ) of di-tert-butyldichlorosilane in the n-hexane. The dilithium derivative of diamino-di-tert-butylsilane reacts with FSiMe2R′ ( 3 : R′?Me, 4 : R′?F) in a molar ratio 1 : 2 to give the 1,3,5-trisilazanes 3 and 4 , (Me3C)2SiNHSiMe2R′, in a molar ratio 1 : 1 with F3SiN(SiMe3)2 to give the 1,3-diaza-2,4-disilacyclobutane 5 , (Me3C)2Si(NH)2SiFN(SiMe3)2, and with F2BN(SiMe3)2 to give the 1,3,5,7-tetraaza-2,6-dibora-4,8-disilacyclooctane 6 , [(Me3C)2SiNH-BN(SiMe3)2-NH]2. The dilithium derivative of di-tert-butyl-bis(methylamino)silane reacts with SiF4 with formation of the 1,3,5-trisilazane 7 , (Me3C)2Si(NMeSiF3)2, and the spirocycic compound 8 , [(Me3C)2Si(NMe)2]2Si, with SnCl2 the cyclosilazane 9 , (Me3C)2SiNMe2 is obtained. The dilithium derivative of 3 reacts with SnCl2 to give the cyclo-1,3-diaza-2-sila-4-stannylen 10 , (Me3C)2Si(NSiMe3)2Sn. The oxidation of 10 with elemental sulfur leads to the formation of the spirocyclus 11 , [(Me3C)2Si(NSiMe3)2SnS]2.  相似文献   

6.
The Perthioborates RbBS3, TIBS3, and Tl3B3S10 . RbBS3 (P21/c, a=7.082(2) Å, b=11.863(4) Å, c=5.794(2) Å, β=106.54(2)°) was prepared as colourless, plate-shaped crystals by reaction of stoichiometric amounts of rubidium sulfide, boron, and sulfur at 600°C and subsequent annealing. TlBS3 (P21/c, a=6.874(3) Å, b=11.739(3) Å, c=5.775(2) Å, β=113.08(2)°) which is isotypic with RbBS3 was synthesized from a sample of the composition Tl2S · 2 B2S3. The glassy product which was obtained after 7 h at 850°C was annealed in a two zone furnace for 400 h at 400→350°C. Yellow crystals of TlBS3 formed at the warmer side of the furnace. Tl3B3S10 (P1 , a=6.828(2) Å, b=7.713(2) Å, c=13.769(5) Å, α=104.32(2)°, β=94.03(3)°, γ=94.69(2)°) was prepared as yellow plates from stoichiometric amounts of thallium sulfide, boron, and sulfur at 850°C and subsequent annealing. All compounds contain tetrahedrally coordinated boron. The crystal structures consist of polymeric anion chains. In the case of RbBS3 and TlBS3 nonplanar five-membered B2S3 rings are spirocyclically connected via the boron atoms. To obtain the anionic structure of Tl3B3S10 every third B2S3 ring of the polymeric chains of MBS3 is to be substituted by a six-membered B(S2)2B ring.  相似文献   

7.
The S‐functionalized aminosilane Me2Si(NH‐C6H4‐2‐SPh)2 (H2L) ( 1 ) was prepared from dichlorodimethylsilane and lithiated 2‐(phenylthio)aniline. Treatment of compound 1 with two equivalents of n‐butyllithium led to the dilithium derivative Li2L, which was used in subsequent reactions with MCl (M = Tl, Cu, Ag) to prepare the complexes [Tl2L] ( 2 ), [Cu2Tl2L2] · 2THF ( 3a ), [Cu2Tl2L2(THF)2] ( 3b ), and [Ag4L2(THT)2] ( 4 ) (THT = tetrahydrothiophene). Compound 2 consists of two thallium atoms, which are connected by a L2– ligand to give a puckered Tl2N2 ring with Tl–N distances of 255(1)–268(1) pm. Compounds 3a and 3b are heterobimetallic complexes, which are based on [Cu2L2]2– cores featuring a Cu2N4Si2 ring with linearly coordinated copper atoms [Cu–N: 190.7(3)–192.5(3) pm] and two peripherally attached Tl atoms [Tl–N: 272.7(3)–281.9(3) pm]. The molecular structure of the tetranuclear silver(I) complex 4 is closely related to the structure of compounds 3a and 3b by replacement of the Cu and Tl atoms with Ag atoms. The Ag–N distances are 217.5(3)–245.7(3) pm.  相似文献   

8.
On the Structure of Sr3(BN2)2 The structure of Sr3(BN2)2 was determined on single-crystal X-ray data collected with a four-circle diffractometer. Sr3(BN2)2 crystallizes in the cubic space group Im3 m (no. 229) with a = 764.56(3) pm and Z = 3. The structure contains linear BN3?2 ions with a B? N bond length of 135.8(6) pm. The straight forward synthesis employing metal nitrides plus boron nitride yielded crystalline powders of M3(BN2)2 (M = Ca, Sr) at 1100°C (5 days). Cubic indexing of guinier patterns gave a = 765.8(1) pm for M = Sr and a = 734.7(2) pm for M = Ca. The structure refinement on a single crystal of Sr3(BN2)2 revealed that one strontium site (2a; 0, 0, 0) is occupied by only about 50%. It has been tried to fully occupy this site with an alkali metal (A) to obtain ASr4(BN2)3 (Z = 2). Reactions with A = Na yielded crystalline powders. Cubic indexing of the guinier pattern analogous to that of Sr3(BN2)2 gave a = 754.2(1) pm.  相似文献   

9.
Synthesis and Crystal Structure of the Transition Metal Trimetaphosphimates Zn3[(PO2NH)3]2 · 14 H2O and Co3[(PO2NH)3]2 · 14 H2O The transition metal trimetaphosphimates Zn3[(PO2NH)3]2 · 14 H2O and Co3[(PO2NH)3]2 · 14 H2O were obtained by the reaction of an aqueous solution of Na3(PO2NH)3 · 4 H2O with the respective metal nitrate or halide (molar ratio 1 : 4). The structure of Zn3[(PO2NH)3]2 · 14 H2O was solved by single crystal X‐ray methods. The structure of isotypic Co3[(PO2NH)3]2 · 14 H2O was refined from X‐ray powder diffraction data using the Rietveld method (Zn3[(PO2NH)3]2 · 14 H2O ( 1 ): P 1, a = 743.7(2), b = 955.9(2), c = 980.1(2) pm, α = 102.70(3), β = 90.46(3), and γ = 100.12(3)°, Z = 1; Co3[(PO2NH)3]2 · 14 H2O ( 2 ): P 1, a = 746.05(1), b = 957.06(2), c = 988.51(2) pm, α = 102.162(1), β = 90.044(1), and γ = 99.258(1)°, Z = 1). In 1 and 2 the P3N3 rings of the trimetaphosphimate ions attain a conformation which can be described as a combination of an ideal boat and an ideal twist conformation. The trimetaphosphimate ions act as bridging ligands. Thus chains of alternating M2+ and (PO2NH)33– ions are formed which are interconnected by additional M2+ ions forming electro‐neutral double chains. In the solid these double chains are connected by hydrogen bonds.  相似文献   

10.
New Organometallic Indium Nitrogen Compounds. Synthesis and Crystal Structures of [{Cp(CO)3Mo}2InN(SiMe3)2] and [{Cp(CO)3Mo}In{N(SiMe3)2}2] The reaction of [{Cp(CO)3Mo}2InCl] with LiN · (SiMe3)2 leads to the formation of [{Cp(CO)3Mo}2InN · (SiMe3)2] ( 1 ). 1 is monomeric and it contains an indium atom which is coordinated in a trigonal planar manner by two {Cp(CO)3Mo} fragments and a N(SiMe3)2 group. The corresponding bis-amide [{Cp(CO)3Mo}In{N(SiMe3)2}2] ( 2 ) is prepared by the reaction of [{Cp(CO)3Mo}InCl2] with two equivalents of LiN(SiMe3)2. In analogy to 1, 2 is monomeric and it contains an indium atom in a trigonal planar coordination.  相似文献   

11.
Solvent-free Synthesis of Tetramethylammonium Salts: Synthesis and Characterization of [N(CH3)4]2[C2O4], [N(CH3)4][CO3CH3], [N(CH3)4][NO2], [N(CH3)4][CO2H], and [N(CH3)4][O2C(CH2)2CO2CH3] A general procedure to synthesize tetramethylammonium salts is presented. Several tetramethylammonium salts were prepared in a crystalline state by solvent-free reaction of trimethylamine and different methyl compounds at mild conditions: [N(CH3)4]2[C2O4] (cubic; a = 1 114.8(3) pm), [N(CH3)4][CO3CH3] (P21/n; a = 813.64(3), b = 953.36(3), c = 1 131.3(4) pm, β = 90.03(1)°), [N(CH3)4][NO2] (Pmmn; a = 821.2(4), b = 746.5(3), c = 551.5(2) pm), [N(CH3)4][CO2H] (Pmmn; a = 792.8(7), b = 791.7(3), c = 563.3(4) pm) and [N(CH3)4][O2C(CH2)2CO2CH3] (P21; a = 731.1(2), b = 826.4(3), c = 1 025.2(3) pm, β = 110.1(1)°). The tetramethylammonium salts were characterized by IR-spectroscopy and X-ray diffraction. The crystal structures of the methylcarbonate and the nitrite are described.  相似文献   

12.
The reaction of Na2[Fe(CO)4] with Br2CF2 in n‐pentane generates a mixture of the compounds (CO)3Fe(μ‐CO)3–n(μ‐CF2)nFe(CO)3 ( 2 , n = 2; 3 , n = 1) in low yields with 3 as the main product. 3 is obtained free from 2 by reacting Br2CF2 with Na2[Fe2(CO)8]. The non‐isolable monomeric complex (CO)4Fe=CF2 ( 1 ) can probably considered as the precursor for 2 . 3 reacts with PPh3 with replacement of two CO ligands to form Fe2(CO)6(μ‐CF2)(PPh3)2 ( 4 ). The complexes 2 – 4 were characterized by single crystal X‐ray diffraction. While the structure of 2 is strictly similar to that of Fe2(CO)9, the structure of 3 can better be described as a resulting from superposition of the two enantiomers 3 a and 3 b with two semibridging CO groups. Quantum chemical DFT calculations for the series (CO)3Fe(μCO)3–n(μ‐CF2)nFe(CO)3 (n = 0, 1, 2, 3) as well as for the corresponding (μ‐CH2) derivatives indicate that the progressively larger σ donor and π acceptor properties for the bridging ligands, in the order CO < CF2 < CH2, favor a stronger Fe–Fe bond.  相似文献   

13.
Treatment of trans-Pt(COCOPh)(Cl)(PPh3)2 (1a) with AgBF4in THF led to the formation of a metastatic complex trans-[Pt(COCOPh)(THF)(PPh3)2](BF4) (2) which readily underwent ligand substitution to give a cationic aqua complex trans-[Pt(COCOPh)(OH2)(PPh3)2](BF4) (5a). Complex 5a has been characterized spectroscopically and crystallographically. Analogous reaction of trans-Pt(COCOOMe)(Cl)(PPh3)2 (1b) with Ag(CF3SO3) in dried CH2C12 was found first to yield a methoxyoxalyl triflato complextrans-Pt(COCOOMe)(OTf)(PPh3)2 (6). Attempts to crystallize the triflato product in CH2-cl2hexane under ambient conditions also afforded an aqua complex of the triflate salt f/wu-[Pt(COCOOMe)(OH2)(PPhj)2](CF3SO3) (5b). Complex 5a in a noncoordinating solvent such as CH2C12 or CHCl3 suffered spontaneous decarbonylation to form first cis-[Pt(COPh)(CO)(PPh3)2l(BF4) (3a) then the thermodynamically stable isomer trans-[Pt(COPh)(CO)(PPh3)2](BF4) (3b). Crystallization of complex 3b under ambient conditions resulted in an aqua benzoyl complex trans-[Pt(COPh)(OH2)(PPh3)2](BF4) (7). The replacement of the H2O ligand in complex 7 by CO was done simply by bubbling CO into the solution of 7. The single crystal structures of 5b and 7 have been determined by X-ray diffraction. The distances of the Pt-O bonds in 5a, 5b, and 7 support that the aqua ligand is a weak donor in such cationic aquaorganoplatinum(lI) complexes, in agreement with their lability to the substitution reactions.  相似文献   

14.
Oxidative addition reactions of quinolines 1a , b with Pd(dba)2 in the presence of PPh3 (1:2) in acetone gave dinuclear palladium complexes [Pd(C,N‐2‐C9 H4N‐CHO‐3‐R‐6)Cl(PPh3)]2 [(R = H ( 2a ), R = OMe ( 2b ), which were reacted with isocyanide XyNC (Xy = 2,6‐Me2C6H3) to give novel iminoacyl quinolinylpalladium complexes 3a , b in good yields (81 and 77%). Cyclopalladated complexes 3a , b were also obtained in low yields (39 and 33.5%) via one‐pot reaction of 1a , b with isonitrile XyNC:Pd(dba)2 (4:1). The reaction of 3a , b with Tl(TfO) (TfO = triflate, CF3SO3) in the presence of H2O or EtOH causes depalladation reactions of complexes to provide the corresponding organic compounds 4a , b , 5a , b and 6a , b in yields of 41, 27 and 18 ? 19%, respectively. The products were characterized by satisfactory elemental analyses and spectral studies (IR, 1H, 13C and 31P NMR). The crystal structures 2a , 3a and 3b were determined by X‐ray diffraction studies. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
Mesityl Oxo Molybdenum and Tungsten Compounds. II. Unexpected Formation of Monomesityl Molybdenum(V,VI) Compounds The synthesis of known MoO2Mes2 from MoO2Cl2 and MgMes2 (1 : 1) in THF is accompanied by the formation of monomesityl molybdenum compounds. From ligand exchange and reduction arise [MesMoOCl3] ( 3 a ) and [MesMoO3] ( 3 c ). 3 a and 3 b crystallize in form of [(MesMoO3)2{Mg2Cl2(THF)5}2][MesMoOCl3]2(THF)2, which has been characterized by X-ray structural analysis. In 3 two MesMoO3 units are linked in a ring-like manner via magnesium ions. The anion 3 a , which possesses a distorted trigonal-bipyramidal arrangement, was also isolated as [Mg(THF)6][MesMoOCl3]2 which was investigated by X-ray analysis. The reaction of MoO2Cl2 with MgMes2 in a 1 : 0,5 ratio generates the compounds [Mg(THF)4(MoO3Cl)2] and MoOCl3(THF)2. Reaction pathways which may lead to these compounds are discussed.  相似文献   

16.
The partial hydrolysis of [O(CH2CH2C5H4)2]Y(C5H4CH3) 1 , [O(CH2CH2C5H4)2]Y(C5H5) 3 , and [O(CH2CH2C5H4)2]Ho(C5H4CH3) 5 results in the formation of [O(CH2CH2CH2C5H4)2Y(μ-OH)2]2 2 , (C5H5)3Y(OH2) 9 and (MeC5H4)3Ho(OH2) 11 . The new compounds have been characterized by elemental analyses, IR and NMR spectra. The X-ray structural analyses shows 2 to be monoclinic, space group P21/n with a = 1146.0(3), b= 1046.6(3), c = 1514.9(3) pm, β = 94.83(2)°. The molecular structure shows bridging hydroxyl groups with a mean distance Y? O = 223.8(3) pm. 11 crystallizes in the cubic space group 14 3d with a = 1847.9(3)pm with Z = 16 molecules per unit cell. The molecules posses symmetry C3-3, the coordination is trigonal pyramidal with three methylcyclopentadienyl anions and one water molecule as ligands. The distance Ho? O is 231 pm.  相似文献   

17.
Reactions of Lithium Hydridosilylamides RR′(H)Si–N(Li)R″ with Chlorotrimethylsilane in Tetrahydrofuran and Nonpolar Solvents: N‐Silylation and/or Formation of Cyclodisilazanes The lithiumhydridosilylamides RR′(H)Si–N(Li)R″ ( 2 a : R = R′ = CHMe2, R″ = SiMe3; 2 b : R = R′ = Ph, R″ = SiMe3; 2 c : R = R′ = CMe3, R″ = SiMe3; 2 d : R = R′ = R″ = CMe3; 2 e : R = Me, R′ = Si(SiMe3)3, R″ = CMe3; 2 f – 2 h : R = R′ = Me, f : R″ = 2,4,6‐Me3C6H2, g : R″ = SiH(CHMe2)2, h : R″ = SiH(CMe3)2; 2 i : R = R′ = CMe3, R″ = SiH(CMe3)2) were prepared by reaction of the corresponding hydridosilylamines RR′(H)Si–NHR″ 2 a – 2 i with n‐butyllithium in equimolar ratio in n‐hexane. The unknown amines 1 e – 1 i and amides 2 f – 2 i have been characterized spectroscopically. The wave numbers of the Si–H stretching vibrations and 29Si–1H coupling constants of the amides are less than of the analogous amines. This indicates a higher hydride character for the hydrogen atom of the Si–H group in the amide in comparison to the amines. The 29Si‐NMR chemical shifts lie in the amides at higher field than in the amines. The amides 2 a – 2 c and 2 e – 2 g react with chlorotrimethylsilane in THF to give the corresponding N‐silylation products RR′(H)Si–N(SiMe3)R″ ( 3 a – 3 c , 3 e – 3 g ) in good yields. In the reaction of 2 i with chlorotrimethylsilane in molar ratio 1 : 2,33 in THF hydrogen‐chlorine exchange takes place and after hydrolytic work up of the reaction mixture [(Me3C)2(Cl)Si]2NH ( 5 a ) is obtained. The reaction of the amides 2 a – 2 c , 2 f and 2 g with chlorotrimethylsilane in m(p)‐xylene and/or n‐hexane affords mixtures of N‐substitution products RR′(H)Si–N(SiMe3)R″ ( 3 a – 3 c , 3 f , 3 g ) and cyclodisilazanes [RR′Si–NR″]2 ( 6 a – 6 c , 6 f , 6 g ) as the main products. In case of the reaction of 2 h the cyclodisilazane 6 h was obtained only. 2 c – 2 e show a very low reactivity toward chlorotrimetyhlsilane in m‐xylene and toluene resp.. In contrast to Me3SiCl the reactivity of 2 d toward Me3SiOSO2CF3 and Me2(H)SiCl is significant higher. 2 d react with Me3SiOSO2CF3 and Me2(H)SiCl in n‐hexane under N‐silylation to give RR′(H)Si–N(SiMe3)R″ ( 3 d ) and RR′(H)Si–N(SiHMe2)R″ ( 3 d ′) resp. The crystal structures of [Me2Si–NSiMe3]2 ( I ) ( 6 f , 6 g and 6 h ) have been determined.  相似文献   

18.
Thienylmercury(II)chloride reacts with [Pd(PPh3)2Cl2], [Pd(PPh3)4] and [Pt(PPh3)4] to afford new compounds containing a metal-2-thienyl linkage. The compound [Pd(PPh3)2(2-C4H3S)Cl] probably has trans stereochemistry.2-Bromothiophen undergoes oxidative addition with [Pd(PPh3)4] and [Pt(PPh3)4], probably via a radical mechanism. With [Pd(CO)(PPh3)3], a carbonyl inserted product is obtained. The bromo-metal(II) complexes have trans stereochemistry. The course of the reaction between 3-methyl-2-bromothiophen and Pd(PPh3)4 is more complex. Thus, there is evidence of some cis bromopalladium(II) compounds amongst the products, also there is good evidence to support the view that some isomerisation of 3-methyl-2-thienyl to 4-methyl-2-thienyl occurs during the reaction, thus giving greater molar quantities of [Pd(PPh3)2(4-CH3-2-C4H2S)Br] than can be accounted for from any initial 4-methyl-2-bromothiophen impurity.The metallation of the thiophen ring, probably in the 4-position, with palladium(II) is described for 3-theylidene-4-methylaniline.  相似文献   

19.
The reactions of [Ru(N2)(PR3)(‘N2Me2S2’)] [‘N2Me2S2’=1,2‐ethanediamine‐N,N′‐dimethyl‐N,N′‐bis(2‐benzenethiolate)(2?)] [ 1 a (R=iPr), 1 b (R=Cy)] and [μ‐N2{Ru(N2)(PiPr3)(‘N2Me2S2’)}2] ( 1 c ) with H2, NaBH4, and NBu4BH4, intended to reduce the N2 ligands, led to substitution of N2 and formation of the new complexes [Ru(H2)(PR3)(‘N2Me2S2’)] [ 2 a (R=iPr), 2 b (R=Cy)], [Ru(BH3)(PR3)(‘N2Me2S2’)] [ 3 a (R=iPr), 3 b (R=Cy)], and [Ru(H)(PR3)(‘N2Me2S2’)]? [ 4 a (R=iPr), 4 b (R=Cy)]. The BH3 and hydride complexes 3 a , 3 b , 4 a , and 4 b were obtained subsequently by rational synthesis from 1 a or 1 b and BH3?THF or LiBEt3H. The primary step in all reactions probably is the dissociation of N2 from the N2 complexes to give coordinatively unsaturated [Ru(PR3)(‘N2Me2S2’)] fragments that add H2, BH4?, BH3, or H?. All complexes were completely characterized by elemental analysis and common spectroscopic methods. The molecular structures of [Ru(H2)(PR3)(‘N2Me2S2’)] [ 2 a (R=iPr), 2 b (R=Cy)], [Ru(BH3)(PiPr3)(‘N2Me2S2’)] ( 3 a ), [Li(THF)2][Ru(H)(PiPr3)(‘N2Me2S2’)] ([Li(THF)2]‐ 4 a ), and NBu4[Ru(H)(PCy3)(‘N2Me2S2’)] (NBu4‐ 4 b ) were determined by X‐ray crystal structure analysis. Measurements of the NMR relaxation time T1 corroborated the η2 bonding mode of the H2 ligands in 2 a (T1=35 ms) and 2 b (T1=21 ms). The H,D coupling constants of the analogous HD complexes HD‐ 2 a (1J(H,D)=26.0 Hz) and HD‐ 2 b (1J(H,D)=25.9 Hz) enabled calculation of the H? D distances, which agreed with the values found by X‐ray crystal structure analysis ( 2 a : 92 pm (X‐ray) versus 98 pm (calculated), 2 b : 99 versus 98 pm). The BH3 entities in 3 a and 3 b bind to one thiolate donor of the [Ru(PR3)(‘N2Me2S2’)] fragment and through a B‐H‐Ru bond to the Ru center. The hydride complex anions 4 a and 4 b are extremely Brønsted basic and are instantanously protonated to give the η2‐H2 complexes 2 a and 2 b .  相似文献   

20.
The hydrothermal reaction of 2,3‐pyridinedicarboxylic acid (2,3‐H2pda) with a mixture of Cd(NO3)2 and Ni(NO3)2 afforded a coordination polymer, [CdNi(2,3‐pda)2(H2O)3] ( 1 ); in contrast, that with a mixture of Cd(NO3)2 and Zn(NO3)2 surprisingly produced a discrete molecule, trans‐[Cd(3‐pa)2(H2O)4] ( 2 ) (3‐pa? = 3‐pyridinecarboxylate). Since a direct reaction between a single metal salt, Cd(NO3)2 or Zn(NO3)2, and 3‐pyridinecarboxylic acid (3‐Hpa) under similar hydrothermal conditions yielded different coordination polymers containing 3‐pa?, it appears that the apparently thermal decarboxylation from ligated 2,3‐pda2? to 3‐pa? occurs after complexation of both metal cations, Cd(II) and Zn(II). A new coordination mode, formed for 2,3‐pda2? in structure 1 , appears to help formation of microporous channels by piling up the observed 2D hydrogen‐bonded heteropolynuclear layers. Each channel apparently consists of two interpenetrating 63 Cd(II) and Ni(II) nets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号