首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The action of cholera toxin and E. coli heat-labile enterotoxin can be inhibited by blocking their binding to the cell-surface receptor GM1. We have used anchor-based design to create 15 receptor binding inhibitors that contain the previously characterized inhibitor MNPG as a substructure. In ELISA assays, all 15 compounds exhibited increased potency relative to MNPG. Binding affinities for two compounds, each containing a morpholine ring linked to MNPG via a hydrophobic tail, were characterized by pulsed ultrafiltration (PUF) and isothermal titration calorimetry (ITC). Crystal structures for these compounds bound to toxin B pentamer revealed a conserved binding mode for the MNPG moiety, with multiple binding modes adopted by the attached morpholine derivatives. The observed binding interactions can be exploited in the design of improved toxin binding inhibitors.  相似文献   

2.
17β-Hydroxysteroid dehydrogenase type 1 (17β-HSD1) catalyzes the last step of the estrogen biosynthesis, namely the reduction of estrone to the biologically potent estradiol. As such it is a potentially attractive drug target for the treatment of estrogen-dependent diseases like breast cancer and endometriosis. 17β-HSD1 belongs to the bisubstrate enzymes and exists as an ensemble of conformations. These principally differ in the region of the βFαG′-loop, suggesting a prominent role in substrate and inhibitor binding. Although several classes of potent non-steroidal 17β-HSD1 inhibitors currently exist, their binding mode is still unclear. We aimed to elucidate the binding mode of bis(hydroxyphenyl)arenes, a highly potent class of 17β-HSD1 inhibitors, and to rank these compounds correctly with respect to their inhibitory potency, two essential aspects in drug design. Ensemble docking experiments resulted in a steroidal binding mode for the closed enzyme conformations and in an alternative mode for the opened and occluded conformers with the inhibitors placed below the NADPH interacting with it synergically via π–π stacking and H-bond formation. Both binding modes were investigated by MD simulations and MM-PBSA binding free energy estimations using as representative member for this class compound 1 (50 nM). Notably, only the alternative binding mode proved stable and was energetically more favorable, while when simulated in the steroidal binding mode compound 1 was displaced from the active site. In parallel, ab initio studies of small NADPH-inhibitor complexes were performed, which supported the importance of the synergistic interaction between inhibitors and cofactor.  相似文献   

3.
Microsomal prostaglandin E synthase-1 (mPGES-1) is a newly recognized therapeutic target for the treatment of inflammation, pain, cancer, atherosclerosis, and stroke. Many mPGES-1 inhibitors have been discovered. However, as the structure of the binding site is not well-characterized, none of these inhibitors was designed based on the mPGES-1 structure, and their inhibition mechanism remains to be fully disclosed. Recently, we built a new structural model of mPGES-1 which was well supported by experimental data. Based on this model, molecular docking and competition experiments were used to investigate the binding modes of four representive mPGES-1 inhibitors. As the inhibitor binding sites predicted by docking overlapped with both the substrate and the cofactor binding sites, mPGES-1 inhibitors might act as dual-site inhibitors. This inhibitory mechanism was further verified by inhibitor-cofactor and inhibitor-substrate competition experiments. To investigate the potency-binding site relationships of mPGES-1 inhibitors, we also carried out molecular docking studies for another series of compounds. The docking results correlated well with the different inhibitory effects observed experimentally. Our data revealed that mPGES-1 inhibitors could bind to the substrate and the cofactor binding sites simultaneously, and this dual-site binding mode improved their potency. Future rational design and optimization of mPGES-1 inhibitors can be carried out based on this binding mechanism.  相似文献   

4.
Abstract

Several novel quaternary pyridinium bisphosphonates have been synthesised and their efficacy as potential anti-resorptive bone agents have been tested in Dictyostelium discoideum. This assay has been shown to accurately reflect the potency of a bisphosphonic acid as an anti-resorptive compound. All the quaternary bisphosphonates are very potent growth inhibitors but results indicate that the more potent compounds are those containing hydrophobic, bulky groups.  相似文献   

5.
To create highly efficient inhibitors for FK506‐binding proteins, a new asymmetric synthesis for pro‐(S)‐C5‐branched [4.3.1] aza‐amide bicycles was developed. The key step of the synthesis is an HF‐driven N‐acyliminium cyclization. Functionalization of the C5 moiety resulted in novel protein contacts with the psychiatric risk factor FKBP51, which led to a more than 280‐fold enhancement in affinity. The most potent ligands facilitated the differentiation of N2a neuroblastoma cells with low nanomolar potency.  相似文献   

6.
采用分子力学和分子动力学方法, 考察了MMPs抑制剂、焦性没食子酸(Pyrogallic acid)和杨梅黄酮(Myricetin)与MMP-7的具体结合方式以及相互作用的情况. 研究结果表明, 在与MMP-7结合时, 杨梅黄酮比焦性没食子酸具有更高的亲合性, 因此杨梅黄酮对MMP-7有更好的效能, 这与实验测得的活性顺序相符. 另外, 密度泛函理论的计算结果表明, 此类抑制剂能够通过ZBG以单配位的形式与MMPs的Zn2+相互作用. 理论计算的结果可能有助于抑制剂的设计及其效能的改善.  相似文献   

7.
The design, synthesis, and evaluation of novel thieno[2,3-d]pyrimidin-4-yl hydrazone analogues as cyclin-dependent kinase 4 (CDK4) inhibitors are described. In continuing our program aim to search for potent CDK4 inhibitors, the introduction of a thiazole group at the hydrazone part has led to marked enhancement of chemical stability. Furthermore, by focusing on the optimization at the C-4' position of the thiazole ring and the C-6 position of the thieno[2,3-d]pyrimidine moiety, compound 35 has been identified with efficacy in a xenograft model of HCT116 cells. In this paper, the potency, selectivity profile, and structure-activity relationships of our synthetic compounds are discussed.  相似文献   

8.
The rational discovery of new peptidomimetic inhibitors of the coagulation factor Xa (fXa) could help set more effective therapeutic options (to prevent atrial fibrillation). In this respect, we explored the conformational impact on the enzyme inhibition potency of the malonamide bridge, compared to the glycinamide one, as a linker connecting the P1 benzamidine anchoring moiety to the P4 aryl group of novel selective fXa inhibitors. We carried out structure–activity relationship (SAR) studies aimed at investigating para- or meta-benzamidine as the P1 basic group as well as diversely decorated aryl moieties as P4 fragments. To this end, twenty-three malonamide derivatives were synthesized and tested as inhibitors of fXa and thrombin (thr); the molecular determinants behind potency and selectivity were also studied by employing molecular docking. The malonamide linker, compared to the glycinamide one, does significantly increase anti-fXa potency and selectivity. The meta-benzamidine (P1) derivatives bearing 2′,4′-difluoro-biphenyl as the P4 moiety proved to be highly potent reversible fXa-selective inhibitors, achieving inhibition constants (Ki) in the low nanomolar range. The most active compounds were also tested against cholinesterase (ChE) isoforms (acetyl- or butyrylcholinesterase, AChE, and BChE), and some of them returned single-digit micromolar inhibition potency against AChE and/or BChE, both being drug targets for symptomatic treatment of mild-to-moderate Alzheimer’s disease. Compounds 19h and 22b were selected as selective fXa inhibitors with potential as multimodal neuroprotective agents.  相似文献   

9.
Brassinosteroids are important phytohormones that affect many aspects of plant growth and development. In order to manipulate brassinosteroid levels in plant tissues by using specific biosynthesis inhibitors, we have carried out a systemic search for specific inhibitors of brassinosteroid biosynthesis. Synthesis of triazole derivatives based on the ketoconazole scaffold revealed a series of novel brassinosteroid biosynthesis inhibitors (the YCZ series). To explore the structure-activity relationships of this synthetic series, we now report the synthesis of new triazole derivatives with different aromatic structures at position 2 of 1,3-dioxolane skeleton. We found that the variation of aromatic substituent significantly affect the inhibitory potency. Structure-activity relationships studies indicated that 4-chlorophenyl analogue is the most potent inhibitor of BR biosynthesis with an IC?? value approximately 0.12 ± 0.04 μM, while a bulky biphenyl group exhibited a great negative effect on promoting the inhibitory potency with an IC?? larger than 10 μM.  相似文献   

10.
Structure-based 3D QSAR and design of novel acetylcholinesterase inhibitors   总被引:5,自引:0,他引:5  
The paper describes the construction, validation and application of a structure-based 3D QSAR model of novel acetylcholinesterase (AChE) inhibitors. Initial use was made of four X-ray structures of AChE complexed with small, non-specific inhibitors to create a model of the binding of recently developed aminopyridazine derivatives. Combined automated and manual docking methods were applied to dock the co-crystallized inhibitors into the binding pocket. Validation of the modelling process was achieved by comparing the predicted enzyme-bound conformation with the known conformation in the X-ray structure. The successful prediction of the binding conformation of the known inhibitors gave confidence that we could use our model to evaluate the binding conformation of the aminopyridazine compounds. The alignment of 42 aminopyridazine compounds derived by the docking procedure was taken as the basis for a 3D QSAR analysis applying the GRID/GOLPE method. A model of high quality was obtained using the GRID water probe, as confirmed by the cross-validation method (q2 LOO=0.937, q2 L50% O=0.910). The validated model, together with the information obtained from the calculated AChE-inhibitor complexes, were considered for the design of novel compounds. Seven designed inhibitors which were synthesized and tested were shown to be highly active. After performing our modelling study the X-ray structure of AChE complexed with donepezil, an inhibitor structurally related to the developed aminopyirdazines, has been made available. The good agreement found between the predicted binding conformation of the aminopyridazines and the one observed for donepezil in the crystal structure further supports our developed model.  相似文献   

11.
In the absence of X‐ray data, the exploration of compound binding modes continues to be a challenging task. For structure‐based design, specific features of active sites in different targets play a major role in rationalizing ligand binding characteristics. For example, dibasic compounds have been reported as potent inhibitors of various trypsin‐like serine proteases, the active sites of which contain several binding pockets that can be targeted by cationic moieties. This results in several possible orientations within the active site, complicating the binding mode prediction of such compounds by docking tools. Therefore, we introduced symmetry in bi‐ and tribasic compounds to reduce conformational space in docking calculations and to simplify binding mode selection by limiting the number of possible pocket occupations. Asymmetric bisbenzamidines were used as starting points for a multistage and structure‐guided optimization. A series of 24 final compounds with either two or three benzamidine substructures was ultimately synthesized and evaluated as inhibitors of five serine proteases, leading to potent symmetric inhibitors for the pharmaceutical drug targets matriptase, matriptase‐2, thrombin and factor Xa. This study underlines the relevance of ligand symmetry for chemical biology.  相似文献   

12.
Visceral leishmaniasis, most lethal form of Leishmaniasis, is caused by Leishmania infantum in the Old world. Current therapeutics for the disease is associated with a risk of high toxicity and development of drug resistant strains. Thiol‐redox metabolism involving trypanothione and trypanothione reductase, key for survival of Leishmania, is a validated target for rational drug design. Recently published structure of trypanothione reductase (TryR) from L. infantum, in oxidized and reduced form along with Sb(III), provides vital clues on active site of the enzyme. In continuation with our attempts to identify potent inhibitors of TryR, we have modeled binding modes of selected tricyclic compounds and quinone derivatives, using AutoDock4. Here, we report a unique binding mode for quinone derivatives and 9‐aminoacridine derivatives, at the FAD binding domain. A conserved hydrogen bonding pattern was observed in all these compounds with residues Thr335, Lys60, His461. With the fact that these residues aid in the orientation of FAD towards the active site forming the core of the FAD binding domain, designing selective and potent compounds that could replace FAD in vivo during the synthesis of Trypanothione reductase can be deployed as an effective strategy in designing new drugs towards Leishmaniasis. We also report the binding of Phenothiazine and 9‐aminoacridine derivatives at the Z site of the protein. The biological significance and possible mode of inhibition by quinone derivatives, which binds to FAD binding domain, along with other compounds are discussed. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

13.
To understand pharmacophore properties of pyranmycin derivatives and to design novel inhibitors of 16S rRNA A site, comparative molecular field analysis (CoMFA) approach was applied to analyze three-dimensional quantitative structure–activity relationship (3D-QSAR) of 17 compounds. AutoDock 3.0.5 program was employed to locate the orientations and conformations of the inhibitors interacting with 16S rRNA A site. The interaction mode was demonstrated in the aspects of inhibitor conformation, hydrogen bonding and electrostatic interaction. Similar binding conformations of these inhibitors and good correlations between the calculated binding free energies and experimental biological activities suggest that the binding conformations of these inhibitors derived from docking procedure were reasonable. Robust and predictive 3D-QSAR model was obtained by CoMFA with q2 values of 0.723 and 0.993 for cross-validated and non-cross-validated, respectively. The 3D-QSAR model built here will provide clear guidelines for novel inhibitors design based on the Pyranmycin derivatives against 16S rRNA A site.  相似文献   

14.
A series of new thiophene derivatives has been synthesized using the Gewald protocol. The acetylcholinesterase inhibition activity was assayed according to Ellman's method using donepezil as reference. Some of the compounds were found to be more potent inhibitors than the reference. 2-(2-(4-(4-Methoxyphenyl)piperazin-1-yl)acetamido)-4,5,6,7-tetrahydrobenzo[b]thiophene-3-carboxamide (IIId) showed 60% inhibition, compared to only 40% inhibition by donepezil.  相似文献   

15.
16.
VEGFR2介导肿瘤诱导的血管生成作用, 是抑制肿瘤生长和转移的新靶点. 为深入探讨VEGFR2活性腔性质以及与抑制剂的结合模式, 采用多拷贝同时搜寻法(MCSS)研究VEGFR2活性腔的性质, 然后用分子对接方法对5个已上临床的VEGFR抑制剂与VEGFR2活性腔进行对接计算, 讨论它们的结合模式, 确定与配体结合相关的关键残基. 研究发现: 疏水腔I, II是配体结合的关键区域, 残基Glu915, Cys917是关键的氢键作用位点, Lys866, Glu883和Asp1044形成的极性区域对提高配体亲合力很重要, 疏水腔III和极性腔IV是额外增强配体结合力的区域, IV区的Arg1030可提供额外的氢键作用位点. 本研究可为全新VEGFR2抑制剂的合理药物设计提供理论依据, 为寻找新的抗肿瘤药物奠定基础.  相似文献   

17.
Bisphosphonates, known for their effectiveness in the treatment of osteoporosis, inhibit bone resorption via mechanisms that involve binding to bone mineral and cellular effects on osteoclasts. The major molecular target of nitrogen-containing bisphosphonates (N-BPs) in osteoclasts is farnesyl diphosphate synthase (FPPS). N-BPs likely inhibit this enzyme by mimicking one or more of the natural isoprenoid lipid substrates (GPP/DMAPP and IPP) but the mode of inhibition is not established. The active site of FPPS comprises a subsite for each substrate. Kinetic studies with recombinant human FPPS indicate that both potent (risedronate) and weak (NE-58051) enzyme inhibitors compete with GPP for binding to FPPS, however, binding to this site does not completely explain the difference in potency of the two inhibitors, suggesting that a second binding site may also be a target of bisphosphonate inhibition. Using the docking software suite Autodock, we explored a dual inhibitor binding mode for recombinant human FPPS. Experimental support for dual binding is suggested by Dixon plots for the inhibitors. N-BPs may inhibit by binding to both the GPP and a second site with differences in potency at least partly arising from inhibition at the second site.  相似文献   

18.
The c-Jun terminal kinases (JNKs) are members of the mitogen-activated protein (MAP) kinase family and regulate signal transduction in response to environmental stress. Activation of JNK3, a neuronal-specific isoform, has been associated with neurological damage, and as such, JNK3 may represent an attractive target for the treatment of neurological disorders. The MAP kinases share between 50% and 80% sequence identity. In order to obtain efficacious and safe compounds, it is necessary to address the issues of potency and selectivity. We report here four crystal structures of JNK3 in complex with three different classes of inhibitors. These structures provide a clear picture of the interactions that each class of compound made with the kinase. Knowledge of the atomic interactions involved in these diverse binding modes provides a platform for structure-guided modification of these compounds, or the de novo design of novel inhibitors that could satisfy the need for potency and selectivity.  相似文献   

19.
A series of novel amide derivatives bearing an indazole moiety were synthesized and evaluated for their in vitro S-adenosyl-L-homocysteine hydrolase (SAHase) inhibitory activity. Among these compounds, 8b, 8m, 8r and 8w showed better or similar inhibitory effects compared to the positive control aristeromycin. These results provide a novel lead for the discovery of more potent non-adenosine analogs as SAHase inhibitors.  相似文献   

20.
GANDI (Genetic Algorithm-based de Novo Design of Inhibitors) is a computational tool for automatic fragment-based design of molecules within a protein binding site of known structure. A genetic algorithm and a tabu search act in concert to join predocked fragments with a user-supplied list of fragments. A novel feature of GANDI is the simultaneous optimization of force field energy and a term enforcing 2D-similarity to known inhibitor(s) or 3D-overlap to known binding mode(s). Scaffold hopping can be promoted by tuning the relative weights of these terms. The performance of GANDI is tested on cyclin-dependent kinase 2 (CDK2) using a library of about 14 000 fragments and the binding mode of a known oxindole inhibitor to bias the design. Top ranking GANDI molecules are involved in one to three hydrogen bonds with the backbone polar groups in the hinge region of CDK2, an interaction pattern observed in potent kinase inhibitors. Notably, a GANDI molecule with very favorable predicted binding affinity shares a 2-N-phenyl-1,3-thiazole-2,4-diamine moiety with a known nanomolar inhibitor of CDK2. Importantly, molecules with a favorable GANDI score are synthetic accessible. In fact, eight of the 1809 molecules designed by GANDI for CDK2 are found in the ZINC database of commercially available compounds which also contains about 600 compounds with identical scaffolds as those in the top ranking GANDI molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号