首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An attempt to synthesize a complex between copper(I) cyanide and thioacetamide (ta) by a direct combination in aqueous solution, surprisingly, produced instead Cu(4)(S(2)O(3))(2)(ta)(10).ta (1), a complex lacking cyanide but including thiosulfate. We know of no precedent for the production of thiosulfate from an aqueous solution of ta. Using a new synthetic approach, a complex of CuCN and ta was subsequently prepared-(CuCN)(ta), 2. In the new method, which has been found to be widely applicable to water-soluble ligands, CuCN is made "available" for coordination by dissolving it in aqueous sodium thiosulfate. Complex 1 crystallizes in the triclinic space group P&onemacr; (No. 2) with unit cell dimensions a = 10.139(3) ?, b = 12.230(4) ?, c = 12.665(4) ?, alpha = 85.20(2) degrees, beta = 67.32(2) degrees, gamma = 68.47(2) degrees, V = 1345(2) ?(3), and Z = 2. Complex 2 crystallizes in the orthorhombic space group Pna2(1) (No. 33) with unit cell dimensions a = 6.993(9) ?, b = 8.744(3) ?, c = 9.372(6) ?, V = 573(1) ?(3), and Z = 4. Some possible pathways for the production of thiosulfate are discussed.  相似文献   

2.
3.
By employing silver salts with a weakly coordinating anion Ag[A] ([A]=[FAl{OC12F15}3], [Al{OC(CF3)3}4]), two phosphaalkynes could be coordinated side‐on to a bare silver(I) center to form the unprecedented homoleptic complexes [Ag(η2‐P≡CtBu)2][FAl{OC12F15}3] ( 1 ) and [Ag(η2‐P≡CtBu)2][Al{OC(CF3)3}4] ( 2 ). DFT calculations show that the perpendicular arrangement in 1 is the minimum energy structure of the coordination of the two phosphaalkynes to a silver atom, whereas for 2 a unique square‐planar coordination mode of the phosphaalkynes at Ag+ was found. Reactions with donor molecules yield the trigonally planar coordinated silver salts [((CH3)2CO)Ag(η2‐P≡CtBu)2][FAl{OC12F15}3] ( 3 ) and [(C7H8)2Ag(η2‐P≡CtBu)][FAl{OC12F15}3] ( 4 ). All of the compounds were comprehensively characterized in solution and in the solid state.  相似文献   

4.
5.
6.
The valence electronic structures of [Cu(hfac)L] (hfac = CF(3)C(O)CHC(O)CF(3); L = PMe(3), CNMe), [Ag(hfac)(PMe(3))], and [Ag(fod)(PEt(3))] (fod = t-BuC(O)CHC(O)C(3)F(7)) have been studied by recording their photoelectron spectra and by performing Xalpha-SW calculations on the model compounds [M(dfm)(PH(3))] (dfm = HC(O)CHC(O)H; M = Cu, Ag) and [Cu(dfm)(CNH)]. For the copper complexes, the spectra were recorded between 21 and 160 eV using He I, He II and synchrotron radiation; while, for the silver complexes, He I and He II, spectra were recorded. Assignments were made by comparison of experimental and calculated values of band energies, and, for the copper complexes, by similar comparison of experimental and theoretical branching ratios as a function of photon energy. For the silver complexes, a more limited comparison of band intensities in the He I and He II spectra was made. In analogous compounds, it is shown that the binding energies follow the sequence Ag 4d > Cu 3d, with an energy difference of almost 2 eV.  相似文献   

7.
Zhu  Ting-Chun  Bai  Juan  Sun  Xiao-Hui  Wang  Yu-Feng  Zou  Hua-Hong 《Journal of Cluster Science》2022,33(6):2399-2406
Journal of Cluster Science - Schiff base ligands with multiple chelating coordination sites are usually able to quickly capture lanthanide metal ions to form complexes, and it is difficult to twist...  相似文献   

8.
Three new complexes with phosphanylphosphido ligands, [Cu4{μ2‐P(SiMe3)‐PtBu}4] ( 1 ), [Ag4{μ2‐P(SiMe3)‐PtBu2}4] ( 2 ) and [Cu{η1‐P(SiMe3)‐PiPr2}2][Li(Diglyme)2]+ ( 3 ) were synthesized and structurally characterized by X‐ray diffraction, NMR spectroscopy, and elemental analysis. Complexes 1 and 2 were obtained in the reactions of lithium derivative of diphosphane tBu2P‐P(SiMe3)Li · 2.7THF with CuCl and [iBu3PAgCl]4, respectively. The X‐ray diffraction analysis revealed that the complexes 1 and 2 present macrocyclic, tetrameric form with Cu4P4 and Ag4P4 core. Complex 3 was prepared in the reaction of CuCl with a different derivative of lithiated diphosphane iPr2P‐P(SiMe3)Li · 2(Diglyme). Surprisingly, the X‐ray analysis of 3 revealed that in this reaction instead of the tetramer the monomeric form, ionic complex [Cu{η1‐P(SiMe3)‐PiPr2}2][Li(Diglyme)2]+ was formed.  相似文献   

9.
The synthesis and structural characterization of the first coordination compounds of bis(diphosphacyclobutadiene) cobaltate anions [M(P2C2R2)2]? is described. Reactions of the new potassium salts [K(thf)3{Co(η4‐P2C2tPent2)2}] ( 1 ) and [K(thf)4{Co(η4‐P2C2Ad2)2}] ( 2 ) with [AuCl(tht)] (tht=tetrahydrothiophene), [AuCl(PPh3)] and Ag[SbF6] afforded the complexes [Au{Co(P2C2tPent2)2}(PMe3)2] ( 3 ), [Au{Co(P2C2Ad2)2}]x ( 4 ), [Ag{Co(P2C2Ad2)2}]x ( 5 ), [Au(PMe3)4][Au{Co(P2C2Ad2)2}2] ( 6 ), [K([18]crown‐6)(thf)2][Au{Co(P2C2Ad2)2}2] ( 7 ), and [K([18]crown‐6)(thf)2][M{Co(P2C2Ad2)2}2] ( 8 : M=Au 9 : M=Ag) in moderate yields. The molecular structures of 2 and 3 , and 6 – 9 were elucidated by X‐ray crystallography. Complexes 4 – 9 were thoroughly characterized by 31P and 13C solid state NMR spectroscopy. The complexes [Au{Co(P2C2Ad2)2}]x ( 4 ) and [Ag{Co(P2C2Ad2)2}]x ( 5 ) exist as coordination polymers in the solid state. The linking mode between the monomeric units in the polymers is deduced. The soluble complexes 1 – 3 , 6 , and 7 were studied by multinuclear 1H‐, 31P{1H}‐, and 13C{1H} NMR spectroscopy in solution. Variable temperature NMR measurements of 3 and 6 in deuterated THF reveal the formation of equilibria between the ionic species [Au(PMe3)4]+, [Au(PMe3)2]+, [Co(P2C2R2)2]?, and [Au{Co(P2C2R2)2}2]? (R=tPent and Ad).  相似文献   

10.
The synthesis of iodine(I) complexes with either benzoimidazole or carbazole-derived sp2 N-containing Lewis bases is described, as well as their corresponding silver(I) complexes. The addition of elemental iodine to the linear two-coordinate Ag(I) complexes produces iodine(I) complexes with a three-center four-electron (3c–4e) [N−I−N]+ bond. The 1H and 1H-15N HMBC NMR studies unambiguously confirm the formation of the complexes in all cases via the [N−Ag−N]+→[N−I−N]+ cation exchange, with the 15N NMR chemical shift change between 94 to 111 ppm when compared to the free ligand. The single crystal X-ray crystallographic studies on eight I+ complexes revealed highly symmetrical [N−I−N]+ bonds with I−N bond distances of 2.21–2.26 Å and N−I−N angles of 177–180°, whilst some of the corresponding Ag+ complexes showed a clear deviation from linearity with N−Ag−N angles of ca. 150° and Ag−N bond distances of 2.09–2.18 Å.  相似文献   

11.
A comparative kinetic study of the urethane reactions of phenyl isocyanate and 1,2-, 1,3-, and 1,4-butanediol was carried out in dichloromethane solution with zirconium (IV) acetylacetonate as catalyst. In situ FT-IR was used to follow the kinetics of the reactions at a constant temperature of 15°–30°C. The rate constants for the reaction of the primary hydroxyl group and the secondary hydroxyl group were calculated as k prim and k sec, respectively. Analysis of the second-order rate constants of these systems indicated that k prim follows 1,2-butanediol >1,3-butanediol >1,4-butanediol. The ratio of k prim/k sec in 1,2-butanediol was the highest and the order followed was the same as with the reaction rate. Activation energies and Eyring parameters were also determined for the urethane reaction of butanediols.  相似文献   

12.
The thioether functionalized aminosilanes Me2Si(NH‐C6H4‐2‐SR)2 (R = Ph, Me) were lithiated with nBuLi and subsequently reacted with AgCl in the presence of PMe3 or with [AuCl(PMe3)]. In the case of Me2Si(NH‐C6H4‐2‐SPh)2 the dinuclear complexes [M2{Me2Si(NC6H4‐2‐SPh)2}(PMe3)2] (M = Ag; Au) were isolated. The analogous reactions starting from Me2Si(NH‐C6H4‐SMe)2 afforded the dinuclear gold complex [Au2{Me2Si(NC6H4‐2‐SMe)2}(PMe3)2] and the tetranuclear silver complex [Ag4{Me2Si(NC6H4‐2‐SMe)2}2(PMe3)2]. In the dinuclear compounds of the type [M2{Me2Si(NC6H4‐2‐SR)2}(PMe3)2], each of the silylamide N atoms is connected to a M(PMe3) group to give a nearly linear N–M–P arrangement with Ag–N and Au–N bonds in the range of 212.0(4)–213.3(4) pm and 205.3(3)–208.1(9) pm, respectively. [Ag4{Me2Si(NC6H4‐2‐SMe)2}2(PMe3)2] consists of a central Si2N4Ag2 ring with linearly coordinated Ag atoms (Ag‐N: 223.1(4)–222.1(4) pm) and two peripheral Ag(PMe3) units, which are connected to the amido N atoms in a chelating mode. The relatively short transannular Ag ··· Ag separation (277.6(1) pm) within the Si2N4Ag2 ring hints for argentophilic interactions. The peripheral Ag atoms are three coordinated with Ag–N distances of 233.9(4)–242.8(4) pm.  相似文献   

13.
采用密度泛函理论B3LYP方法, 对两类金(I)配合物AuX (X=F, Cl, Br, I)和AuPR3+(R=F, Cl, Br, I, H, Me,Ph)催化C2H4加氢反应的机理进行了理论研究. 计算显示Au(I)配合物对C2H4氢化具有较好的催化效果, 其作用下的加氢反应存在“活化H―H键后再与C2H4反应”和“活化C=C键后再与H2反应”两种途径, 前者的活化能较后者低90-120 kJ·mol-1, 因而具有明显的能量优势. 研究表明AuPR3+ 的催化能力明显强于AuX. 此外, X/PR3基团供、吸电子能力的变化对配合物的催化能力也具有较为显著的影响. 电子结构分析显示Au(I)配合物在C2H4 加氢反应中不仅能够削弱H―H、C=C 键的强度, 还使H2 σH―H*、C2H4 πC=C* 轨道能级下降, 从而缩小了πC=CH―H*或σH―HC=C*轨道间的能级差, 促进了C2H4-H2反应中的电子离域, 从而降低禁阻反应发生的难度.σH―H*、πC=C*轨道能级改变量与加氢反应活化能Ea的降低值之间存在较好的一致性关系, 因此使上述轨道能级下降幅度越大的Au(I)配合物可以获得较好的催化效果.  相似文献   

14.
Three silver(I) dipeptide complexes [Ag(GlyGly)]n(NO3)n (AgGlyGly), [Ag2(GlyAla)(NO3)2]n (AgGlyAla) and [Ag2(HGlyAsp)(NO3)]n (AgGlyAsp) were prepared, investigated and characterized by vibrational spectroscopy (mid-IR), elemental and thermogravimetric analysis and mass spectrometry. For AgGlyGly, X-ray crystallography was also performed. Their stability in biological testing media was verified by time-dependent NMR measurements. Their in vitro antimicrobial activity was evaluated against selected pathogenic microorganisms. Moreover, the influence of silver(I) dipeptide complexes on microbial film formation was described. Further, the cytotoxicity of the complexes against selected cancer cells (BLM, MDA-MB-231, HeLa, HCT116, MCF-7 and Jurkat) and fibroblasts (BJ-5ta) using a colorimetric MTS assay was tested, and the selectivity index (SI) was identified. The mechanism of action of Ag(I) dipeptide complexes was elucidated and discussed by the study in terms of their binding affinity toward the CT DNA, the ability to cleave the DNA and the ability to influence numbers of cells within each cell cycle phase. The new silver(I) dipeptide complexes are able to bind into DNA by noncovalent interaction, and the topoisomerase I inhibition study showed that the studied complexes inhibit its activity at a concentration of 15 μM.  相似文献   

15.
The reactions of silver(I) with isocyclam, scorpiand,trans-Me2[14]anN4, cis-Me6[14]anN4,(N-Me)Me2py[14]anN4 and py[12]anN4 were investigated.The stability constant of the Ag(I) complex with py[12]anN4 was determined. The aqueous solutions of the silver(II) complexes with the 14-membered ligands were obtained, and characterized by means of UV-VIS and CVA measurements. The Ag2+ ion does not form a five-coordinate complex with scorpiand. The formal potentials of the Ag(II)/Ag(I) system in the presence of scorpiand, trans-Me2[14]anN4, cis-Me6[14]anN4 and(N-Me)Me2py[14]anN4 were determined. The mechanism is also proposedfor the electroreduction of the silver(II) complexes with these compounds on a platinum electrode in aqueous solution.  相似文献   

16.
1 INTRODUCTION The polyaza macrocyclic and macrobicyclic mo-lecules have been extensively studied due to theirinclusion ability for neutral molecules, coordinationability for metal cations and versatile roles in thefields of recognition, transformation…  相似文献   

17.
In a 2:2 reaction with silver(I) chloride or bromide, 1,5-bis(1-phospholano)pentane ( 1a ) afforded frame-like macrocyclic structures, with intra- ( 2 , Cl) or intermolecular ( 3 , Br) halido bridges. In contrast, 1,7-bis(1-phospholano)heptane ( 1b ) formed coordination polymers 4a (Cl) and 4b (Br) with bridging bis-phospholane and halido ligands. A unique paddle wheel-type metallacryptand structure 5 was obtained from 1a and silver(I) bromide in a 2:3 reaction (M:L). All complexes were fully characterized by NMR, IR spectroscopy, mass spectrometry, and X-ray crystallography.  相似文献   

18.
19.

Silver(I) complexes of selenones, [LAgNO3] and [AgL2]NO3 (where L is imidazolidine-2-selenone or diazinane-2-selenone and their derivatives) have been prepared and characterized by elemental analysis, IR and NMR (1H, 13C and 107Ag) spectroscopy. An upfield shift in the C=Se resonance of selenones in 13C NMR and a downfield shift in N-H resonance in 1H NMR are consistent with selenium coordination to silver(I). In 107Ag NMR, the AgNO3signal is deshielded by 450-650 ppm on coordination to selenones. Greater upfield shifts in 13C NMR were observed for [LAgNO3] compared to [AgL2]NO3complexes, whereas the opposite trend was observed for 1H and107Ag NMR chemical shifts.  相似文献   

20.
[Ag(NH3)2]+ ions are chosen as an initial reaction precursor because of its simple displacement reaction and intrinsic arrangement as well as specific coordination directionality. Two new silver(I) ammine complexes, Ag2(NH3)HL2 ( 2 ) and Ag2(NH3)2HL3 ( 3 ), were obtained by a simple substitution reaction between [Ag(NH3)2]+ ions and pyridine‐4,5‐imidazoledicarboxylic acid [H3L2 = 2‐(3′‐pyridyl) 4,5‐imidazoledicarboxylic acid and H3L3 = 2‐(4′‐pyridyl) 4,5‐imidazoledicarboxylic acid]. Silver dimers are connected into a 2D layer and 1D chain in complexes 2 and 3 , respectively. In complex 2 two kinds of displacement reactions (mono‐substituting and bis‐substituting) occurred between the ammine molecules in [Ag(NH3)2]+ ions and H3L2, however, only the mono‐substituting reaction occurs in complex 3 .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号