首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
The adsorption of benzotriazole--an outstanding corrosion inhibitor for copper--on Cu(111), Cu(100), Cu(110), and low coordinated defects thereon has been studied and characterized using density functional theory (DFT) calculations. We find that benzotriazole can either chemisorb in an upright geometry or physisorb with the molecular plane being nearly parallel to the surface. While the magnitude of chemisorption energy increases as passing from densely packed Cu(111) to more open surfaces and low coordinated defects, the physisorption energy is instead rather similar on all three low Miller index surfaces. It is pointed out that due to a large dipole moment of benzotriazole the dipole-dipole interactions are rather important. For perpendicular chemisorption modes the lateral repulsion is very long ranged, extending up to the nearest-neighbor distance of about 60 bohrs, whereas for parallel adsorption modes the lateral interactions are far less pronounced and the molecules experience a weak attraction at distances ?25 bohrs. The chemisorption energies were therefore extrapolated to zero coverage by a recently developed scheme and the resulting values are -0.60, -0.73, and -0.92 eV for Cu(111), Cu(100), and Cu(110), respectively, whereas the zero-coverage physisorption energy is about -0.7 eV irrespective of the surface plane. While the more densely packed surfaces are not reactive enough to interact with the molecular π-system, the reactivity of Cu(110) appears to be at the onset of such interaction, resulting in a very stable parallel adsorption structure with an adsorption energy of -1.3 eV that is ascribed as an apparent chemisorption+physisorption mode.  相似文献   

2.
The reactivity of Cu monolayer (ML) and bilayer films grown on Ru(0001) towards O(2) and H(2) has been investigated. O(2) initial sticking coefficients were determined using the King and Wells method in the incident energy range 40-450 meV, and compared to the corresponding values measured on clean Ru(0001) and Cu(111) surfaces. A relative large O(2) sticking coefficient (~0.5-0.8) was measured for 1 ML Cu and even 2 ML Cu/Ru(0001). At low incident energies, this is one order of magnitude larger than the value observed on Cu(111). In contrast, the corresponding reactivity to H(2) was near zero on both Cu monolayer and bilayer films, for incident energies up to 175 meV. Water adsorption on 2 ML Cu/Ru(0001) was found to behave quite differently than on the Ru(0001) and Cu(111) surfaces. Our study shows that Cu/Ru(0001) is a highly selective system, which presents a quite different chemical reactivity towards different species in the same range of collision energies.  相似文献   

3.
Single-atom-catalyst-based systems have been attractive by virtue of their desirable catalytic performance. Herein, the possibility of the 15 transition-metal (TM)-promoted (TM=Fe, Co, Ni, Cu, Zn, Ru, Rh, Pd, Ag, Cd, Os, Ir, Pt, Au, and Hg) and their hydrogen evolution reaction (HER) performance were investigated on two-dimensional titanium carbides (TiC2). It is found that the adsorption strength of TMs on TiC2 is stronger than that of TMs on γ-graphyne and weaker than that of TMs on Ti3C2. Among the fifteen investigated catalysts, Ru−TiC2, Ag−TiC2, Ir−TiC2, Au−TiC2, and Fe−TiC2 exhibits overpotential of −0.18, −0.15, −0.18, −0.17, and −0.04 V, respectively. In addition, the Volmer-Tafel step was preferred to the Volmer-Heyrovsky step on Fe−TiC2. This work suggests that Fe−TiC2 is possibly a superior HER electrocatalyst.  相似文献   

4.
采用SCF-X_α-MS方法, 对于C(2×2)S/Fe(001)吸附体系, 选择Fe_5S和Fe_9S两种原子簇模型, 研究了该吸附体系的电子结构、吸附成键特征及其相互作用图象。结果表明, S吸附于Fe(001)单晶表面具有较强的定域性质, S原子与底物Fe原子之间的吸附相互作用主要表现为S(3p)-Fe(4s,3d)之间的轨道相互作用。通过对表面吸附键长的优化, 其结果与X.S.Zhang等的ARPEFS的实验结果一致。  相似文献   

5.
The atom specific electronic structure of (2 square root of 3 x 2 square root of 3)R30 degrees CO on hcp Ru(0001) has been determined with resonantly excited x-ray emission spectroscopy. We find that the general features of the local adsorbate electronic structure are similar to the situation of CO adsorbed on the fcc metals Ni(100) and Cu(100). The interpretation of the surface chemical bond of (2 square root of 3 x 2 square root of 3)R30 degrees CO/Ru(0001) based on the direct application of the local, allylic model from on-top adsorption on the fcc(100) surfaces Ni(100) and Cu(100) explains many aspects of the surface chemical bond. However, also nonlocal contributions like adsorbate-adsorbate interaction and the deviation from upright on-top adsorption on the Ru(0001) surface influence observables like the heat of adsorption and the Me-CO bond strength.  相似文献   

6.
By performing with density functional theory(DFT) method, the detailed adsorption process and the catalytic decarbonylation mechanisms of furfural over Pd(111) and M/Pd(111)(M = Ni, Cu, Ru) surfaces toward furan were clarified. The results of atomic size factor, formation energy and d-band center showed that Ru/Pd(111) surface was the most stable and active. The adsorption energies of furfural on the different surfaces followed the order Ru/Pd(111) Cu/Pd(111) Pd(111) Ni/Pd(111). After analyzing Mulliken atomic charge population and the deformation density, we can find that on Ru/Pd(111) surface, the number of charge transfer was the most and the interaction was the strongest. Therefore, its adsorption energy was the highest. Furthermore, the furfural decarbonylation pathway is more kinetically feasible on bimetallic surface, and the reaction is the most likely to occur on Ru/Pd(111).  相似文献   

7.
We compare computer simulations to experimental scanning tunneling microscopy (STM) images of chloronitrobenzene molecules on a Cu(111) surface. The experiments show that adsorption induced isomerization of the molecules takes place on the surface. Furthermore, not only the submolecular features can be seen in the STM images, but different isomers can also be recognized. The Todorov-Pendry approach to tunneling produces simulated STM images which are in good accordance with the experiments. Alongside with STM simulations in a tight-binding basis, ab initio calculations are performed in order to analyze the symmetry of relevant molecular orbitals and to consider the nature of tunneling channels. Our calculations show that while the orbitals delocalized to the phenyl ring create a relatively transparent tunneling channel, they also almost isolate the orbitals of the substitute groups at energies which are relevant in STM experiments. These features of the electronic structure are the key ingredients of the accurate submolecular observations.  相似文献   

8.
The complex formation of the ligands 1,12-diazaperylene (dap), 1,1'-bisisoquinoline (bis), 2,2'-bipyridine (bpy) and 1,10-phenanthroline (phen) with transition metal ions (M = Fe, Co, Ni, Cu, Zn, Ru, Os, Re, Pd, Pt, Ag and Cd) in the gas phase has been studied by electrospray ionization mass spectrometry. With the exception of Ru, Os, Fe, Ni and Cu, singly charged complexes [MLn](+) (n = 1,2) were observed. The complexes of dap and bis with Ru, Os, Fe and Ni ions, and the mixed ligand complexes with bpy and phen, are preferably of the doubly charged type [ML3]2+. In addition, collision-induced dissociation (CID) measurements were employed to evaluate the relative stabilities of these complexes. The CID experiments of mixed-ligand complexes which contain both dap and phen or dap and bpy exhibit preferential elimination of bpy, indicating that bpy is a weaker ligand than phen and dap.  相似文献   

9.
The use of 2-(6-methyl-2-benzothiazolylazo)-5-diethylaminophenolas a precolumn derivatizing reagent in the reversed-phase high performance liquid Chromatographic separation and determination of Ru(III), Rh(III), Os(IV), Ir(IV), Pt(II), Co(II), Ni(II) and Cu(II) is reported. When the mobile phase consists of methanol-water (76/24% v/v) and 20 mmol/l (pH 5.0) acetate buffer, the eight complexes can be separated within 35 min on a C8 column. The detection limits are Ru 7.0, Rh 5.1, Os 1.5, Ir 7.6, Pt 3.7, Co 0.62, Ni 0.14 and Cu 1.2 ng/ml, respectively, at a signal-to-noise ratio of 3. RSDs were typically Ca. 1%.  相似文献   

10.
采用密度泛函理论(DFT)以及广义梯度近似方法(GGA)计算了甲酸根(HCOO)在Cu(110)、Ag(110)和Au(110)表面的吸附. 计算结果表明, 短桥位是最稳定的吸附位置, 计算的几何参数与以前的实验和计算结果吻合. 吸附热顺序为Cu(110)(-116 kJ·mol-1)>Ag(110)(-57 kJ·mol-1)>Au(110)(-27 kJ·mol-1), 与实验上甲酸根的分解温度相一致. 电子态密度分析表明, 吸附热顺序可以用吸附分子与金属d-带之间的Pauli 排斥来关联, 即排斥作用越大, 吸附越弱. 另外还从计算的吸附热数据以及实验上HCOO的分解温度估算了反应CO2+1/2H2→HCOO的活化能, 其大小顺序为Au(110)>Ag(110)>Cu(110).  相似文献   

11.
The bonding properties of 1-phenyl-1-propyne (PP, C6H5CCCH3) on Cu(111) at 100 K have been studied using temperature-programmed desorption (TPD), and X-ray, ultraviolet, and two-photon photoemission spectroscopies (XPS, UPS, and 2PPE). In TPD, there is no evidence for dissociation. Multilayer desorption occurs at 187 K, and monolayer desorption occurs at 320 (83.5 kJ/mol) and 390 K (102.4 kJ/mol), with the latter dominating. Based on the calibrated C(1s) XPS, the saturation monolayer coverage is one PP per four surface Cu atoms. The broad and asymmetric C(1s) intensity profile of the monolayer can be resolved into three symmetric components, with peaks at 283.6, 284.5, and 285.2 eV and intensities of 2:6:1, respectively. These are attributed, respectively, to acetylenic carbons bound to Cu, phenyl, and methyl carbons. The monolayer valence band ultraviolet photoemission spectrum profile contains four resonances attributable to PP perturbed by interactions with the Cu(111) substrate. With the exception of the highest occupied molecular orbital (HOMO) that is shifted by 0.4 eV, these are uniformly shifted by 1 eV further from the Fermi level for the multilayer. Calculated electron density plots of the occupied orbitals coupled with UPS profiles suggest a spectator role for the phenyl group and bonding to Cu via the acetylenic carbons. The adsorption of 1.0 monolayer (ML) of PP on Cu(111) lowers the work function by 0.85 eV. Using 2PPE, two unoccupied orbitals were identified at 1.0 (U1*-LUMO) and 0.6 eV (U2*-image state) below the vacuum level. A chemisorption model consistent with these spectroscopic results and the major chemisorption peak in TPD involve di-sigma-bonding of the acetylenic carbons to a pair of second-nearest neighbor surface Cu atoms (cross-bridge).  相似文献   

12.
Gas-phase CO_2 catalyzed activation hydrogenation by Ru atoms was studied with density functional theory. Based on the structure optimization of different potential energy surfaces,there are two crossing points between singlet and triplet potential energy surfaces and there is a crossing point between quintet and triplet potential energy surfaces in the whole catalytic cycle. Spin transition probabilities in the vicinity of the intersections have been calculated by the Landau-Zener model theory. There are three minimum energy crossing points(MECPs) with strong spin-orbital coupling effect and higher spin transition probability,and all spin inversion occurred in s orbital and different d orbitals of ruthenium,indicating this is a typical two-state reactivity(TSR) reaction. Finally,the lowest energy reaction path is ensured.  相似文献   

13.
The synthesis and photophysical and electrochemical properties of tris(homoleptic) complexes [Ru(tpbpy)3](PF6)2 (1) and [Os(tpbpy)3](PF6)2 (2) (tpbpy = 6'-tolyl-2,2':4',2' '-terpyridine) are reported. The ligand tpbpy is formed as the side product during the synthesis of 4'-tolyl-2,2':6',2' '-terpyridine (ttpy) and characterized by single-crystal X-ray diffraction: monoclinic, P21/c. The tridentate tpbpy coordinates as a bidentate ligand. The complexes 1 and 2 exhibit two intense absorption bands in the UV region (200-350 nm) assignable to the ligand-centered (1LC) pi-pi* transitions. The ruthenium(II) complex exhibits a broad absorption band at 470 nm while the osmium(II) complex exhibits an intense absorption band at 485 nm and a weak band at 659 nm assignable to the MLCT (dpi-pi*) transitions. A red shifting of the dpi-pi* MLCT transition is observed on going from the Ru(II) to the Os(II) complex as expected from the high-lying dpi Os orbitals. These complexes exhibit ligand-sensitized emission at 732 and 736 nm, respectively, upon light excitation onto their MLCT band through excitation of higher energy LC bands at room temperature. The MLCT transitions and the emission maxima of 1 and 2 are substantially red-shifted compared to that of [Ru(bpy)3](PF6)2 and [Os(bpy)3](PF6)2. The emission of both the complexes in the presence of acid is completely quenched indicating that the emission is not due to the protonation of the coordinated ligands. Our results indicate the occurrence of intramolecular energy transfer from the ligand to the metal center. Both the complexes undergo quasi-reversible metal-centered oxidation, and the E1/2 values for the M(II)/M(III) redox couples (0.94 and 0.50 V versus Ag/Ag+ for 1 and 2, respectively) are cathodically shifted with respect to that of [Ru(bpy)3](PF6)2 and [Os(bpy)3](PF6)2 (E1/2 = 1.28 and 1.09 V versus Ag/Ag+, respectively). The tris(homoleptic) Ru(II) and Os(II) complexes 1 and 2 could be used to construct polynuclear complexes by using the modular synthetic approach in coordination compounds by exploiting the coordinating ability of the pyridine substituent. Furthermore, these complexes offer the possibility of studying the influence of electron-withdrawing and electron-donating substituents on the photophysical properties of Ru(II) and Os(II) polypyridine complexes.  相似文献   

14.
Copper(II) complexes CuL2 (HL = 2-(2-hydroxyphenyl)-4,4-diphenyl-1,2-dihydro-4H-3,1-benzoxazine and 2-(2-hydroxy-5-nitrophenyl)-4,4-diphenyl-1,2-dihydro-4H-3,1-benzoxazine) in chloroform were studied by EPR and electronic absorption spectroscopy. It was found that the complexation involves the azomethine forms of the ligands, which are coordinated by the Cu atom through the phenol and azomethine fragments of both ligands. The electronic absorption spectra were decomposed into Gaussian components to determine the d-d transition energies. The parameters of the complexation were calculated in terms of the angular overlap model. The order of energy arrangement of the orbitals of the central atom was determined: $d_{x^2 - y^2 } \gg d_{xy} > d_{z^2 } > d_{xz} > d_{yz} $ .  相似文献   

15.
First-principle density functional calculations with cluster and slab models have been performed to investigate adsorption and thermally activated atomic nitrogen on M(111) (M = Cu, Ag, Au) surfaces. Optimized results indicate that the basis set of the N atom has a distinct effect on the adsorption energy but an indistinct one on the equilibrium distance. For the N/M(111) adsorption systems studied here, the threefold face centered cubic (fcc) hollow site is found to be the most stable adsorption site. The reason for the fcc site is that the perfected adsorption site has been explained by the density of states (DOS) analysis, that is, that N(2p) has the smallest DOS population near the Fermi level on the fcc site as compared with other adsorption sites. The variations of the adsorption energy as a function of adsorption site are similar and in the following order of N-M(111) binding strengths on a given site: Cu(111) > Ag(111) > Au(111). It is found that the N atom forms essentially an ionic bond for the most stable site. Large contributions between the M(ns) and N(2p) orbitals (n = 4, 5, and 6 for Cu, Ag, and Au, respectively) are found for the cluster model at the B3LYP/LANL2DZ-6-31G(d,p) level and also found in the slab DFT-GGA calculation results, which are the main characteristics of M-N bonds. At last, the dissociation of N2 on Cu(111) and Au(111) has also been obtained in this work, and the results showed that the dissociation of N2 on Cu(111) is more active than that on the Au(111) surface.  相似文献   

16.
采用密度泛函理论对噻吩分子在Ni(100),Cu(100)和Co(100)表面的吸附构型进行了GGA/PBE水平上的计算,通过比较吸附能及各结构参数,预测了各金属的脱硫活性.结果表明:噻吩在Ni表面发生了作用力较强的化学吸附,噻吩的S—C键有解离趋势;在Cu表面发生的是作用力较弱的物理吸附,噻吩分子构型并未发生较大变化;而噻吩在Co表面的吸附作用最强,噻吩的S—C键已经发生解离,和Co原子之间的距离已经达到甚至短于Co—S键的键长.这说明,金属的吸附脱硫活性为CoNiCu,与实验研究结果一致.此3种金属最稳定的分子吸附位均为hol45位.  相似文献   

17.
The chemisorption of methyl and phenyl iodide has been studied at Cu(110) and Ag(111) surfaces at 290 K with STM and XPS. At both surfaces dissociative adsorption of both molecules leads to chemisorbed iodine, with the STM showing c(2 x 2) and (square root 3 x square root 3)R30 structures at the Cu(110) and Ag(111) surfaces, respectively. At the Cu(110) surface a comparison of coexisting c(2 x 2) I(a) and p(2 x 1) O(a) domains shows the iodine adatoms to be chemisorbed in hollow sites with evidence at low coverage for diffusion in the (110) direction. In the case of methyl iodide no carbon adsorption is observed at either the silver or the copper surfaces, but chemisorbed phenyl groups are imaged at the Cu(110) surface after exposure to phenyl iodide. The STM images show the phenyl groups as bright features approximately 0.7 nm in diameter and 0.11 nm above the iodine adlayer, reaching a maximum surface concentration after approximately 6 Langmuir exposure. However, the phenyl coverage decreases with subsequent exposures to PhI and is negligible by approximately 1000 L exposure, consistent with the formation and desorption of biphenyl. The adsorbed phenyls are located above hollow sites in the substrate, they are stabilized at the top and bottom of step edges and in paired chains (1.1 nm apart) on the terraces with a regular interphenyl spacing within the chains of 1.0 nm in the (110) direction. The interphenyl ring spacing and diffusion of individual phenyls from within the chains shows that the chains do not consist of biphenyl species but may be a precursor to their formation. Although the XPS data shows carbon present at the Ag(111) surface after exposure to PhI, no features attributable to phenyl groups were observed by STM.  相似文献   

18.
采用离散变分Xα方法分别计算了CO和NO以C(或N)端顶位吸附在CuO(110)及Cu2O(110)表面上的基态势能曲线,结果表明:CO在Cu2O表面上的吸附强,而在CuO表面上的吸附弱;NO则在CuO表面上吸附强,在Cu2O表面上吸附弱.它们的吸附能的大小顺序为:CuO-NO>Cu2O-CO>Cu2O-NO>CuO-CO.对于CuO-NO(或CO)吸附体系,主要是Cu的3d轨道与吸附分子的2π轨道间的相互作用;对于Cu2O-CO(或NO)吸附体系,则主要是吸附质分子的5σ及2π分子轨道与其顶位Cu1的4s及4p轨道和侧位Cu2的3d轨道相互作用.本文通过吸附势能曲线、态密度分析、成键分析及电荷转移量和方向等方面对实验现象做了合理的解释.  相似文献   

19.
Surfaces of simple fcc metals such as Cu with nonzero and unequal Miller indices are intrinsically chiral. Density functional theory (DFT) calculations are a useful way to study the enantiospecific adsorption of small chiral molecules on these chiral metal surfaces. We report DFT calculations of seven chiral molecules on several structurally distinct chiral Cu surfaces. These surfaces include two surfaces with (111)-oriented terraces and one with (100)-oriented terraces. Calculations are also described on a surface that was modified to mimic the surface structures that typically appear on real metal surfaces following thermally driven fluctuations in step edges. Our results provide initial information on how variation in the surface structure of intrinsically chiral metal surfaces can affect the enantiospecific adsorption of small molecules on these surfaces.  相似文献   

20.
Cu/NiO-MoO3/SiO2光催化CO2与CH3OH合成碳酸二甲酯的反应性能   总被引:8,自引:0,他引:8  
孔令丽  钟顺和  柳荫 《催化学报》2005,26(10):917-922
 采用表面改性法制备了MoO3-SiO2复合氧化物,用等体积浸渍法制备了Cu/NiO-MoO3/SiO2光催化剂,并用XRD, Raman, IR, TPD-MS, UV-Vis DRS和光促表面反应研究了催化剂的结构、化学吸附性能、吸光性能和光促CO2与CH3OH合成碳酸二甲酯(DMC)的反应性能. 结果表明, Cu和NiO的引入提高了MoO3在SiO2表面的分散度,且Cu和NiO在MoO3-SiO2表面分散均匀; 在金属Cu位和Lewis酸位Mo6+(或Ni2+)的协同作用下, CO2在催化剂表面形成活性较高的的卧式吸附态, CH3OH在催化剂表面形成分子吸附态和解离吸附态; NiO与MoO3复合后部分形成了 Mo-O-Ni 键联,提高了对光的吸收强度; 金属Cu的负载扩展了材料在可见光范围的吸收; 与热表面催化相比,光催化反应在较低的温度下就能显著进行,并提高了CH3OH的转化率,在110 ℃常压和空速300 h-1的条件下,CH3OH转化率可达13.9%,DMC选择性可达90.1%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号