首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hae-Young Kee 《Annals of Physics》2010,325(6):1260-1269
To understand the role of electronic nematic order in the interplay between s- and d-wave particle-particle or particle-hole condensate states, relations between various s- and d-wave order parameters are studied. We find that the nematic operator transforms two independent six-dimensional vectors. The d-wave superconducting, d-density wave, and antiferromagnetic orders are organized into one vector, and the s-wave superconducting, charge density wave, and spin-triplet d-density wave orders into the other vector. Each vector acts as a superspin and transforms under the action of SO(6) where charge, spin, η- and π-pairing, spin-triplet nematic operators satisfy the SO(6) Lie algebra. Electronic nematic order is not a part of the SO(6) group. It commutes with all 15 generators. Our findings imply that nematic order does not affect the competition among the order parameters within the same superspin, while it strongly interferes the interplay between two order parameters that belong to different superspins. For example, nematicity allows a linear coupling between d- and s-wave superconducting order parameters which modifies the superconducting transition temperature. A generalized Ginzburg-Landau theory and further physical implications are discussed.  相似文献   

2.
In this research, we derive a simple expression for the ratio of normal state superconducting state of spin lattice relaxation rate of unconventional superconductors from the BCS weak-coupling equation. The unconventional superconductors we consider have three types of order parameters as d-wave, 3He A-phase and p-wave three-dimensional order parameter that had been done before by Parker and Haas [D. Parker, S. Haas, Physical Review B 75 (2007) 052501]. After using some numerical approximations and some boundary conditions, we can find the ratio of normal state to superconducting state of spin lattice relaxation rate in power series of temperature dependent order parameters and temperature. Our numerical calculations show the coherence peak below critical temperature clearly that are consistent with Parker and Haas [D. Parker, S. Haas, Physical Review B 75 (2007) 052501]. These results do not agree with the believed that the coherence peak is the only property of s-wave superconductor. However from our calculation, we can conclude that the unconventional superconductors can show the coherence peaks.  相似文献   

3.
拓扑超导体自身具有对量子退相干天然的免疫性以及可编织性,这使得它在现代量子计算领域中受到了越来越多的重视,并且成为了下一代计算技术中最有希望的候选者之一。由于拓扑超导态在固有拓扑超导体中相当罕见,因此,当前大部分实验上的工作主要集中在由 s 波超导体与拓扑绝缘体之间通过近邻效应所诱导的拓扑超导体上。本论文中,我们回顾了基于拓扑绝缘体/超导体异质结的拓扑超导体的研究进展。在理论上,Fu 和 Kane 提出,通过近邻效应将 s 波超导体的能隙引入到拓扑绝缘体,可以诱导出拓扑超导电性。在实验上,我们也回顾了一些不同体系中的拓扑超导近邻效应的研究进展。文章的第一部分,我们介绍了一些异质结,包括:三维拓扑绝缘体 Bi2Se3和 Bi2Se3 与 s 波超导体NbSe2 以及 d 波超导体 Bi2Sr2CaCu2O8+δ 的异质结,拓扑绝缘体 Sn1−xPbxTe 与 Pb 的异质结,二维拓扑绝缘体 WTe2 与NbSe2 的异质结。此外,还介绍了 TiBiSe2 在 Pb 上的拓扑绝缘近邻效应。另一部分中,我们对基于拓扑绝缘体的约瑟夫森结进行了回顾,包括著名的基于 Fu-Kane 体系的拓扑绝缘体约瑟夫森结,以及基于约瑟夫森结的超导量子干涉器件。  相似文献   

4.
在 s波超导体 /铁磁绝缘层 / d波超导体 Josephson结 (s/ FI/ d)中 ,考虑结界面铁磁绝缘层的磁散射和粗糙散射情况下 ,运用 Bd G方程和 FT的电流公式计算准粒子的输运系数及 s/ FI/ d结的直流 Josephson电流与温度 T、结两侧的相位差之间的关系。研究表明 :结界面的磁散射和粗造散射均抑制结中准粒子的 Andreev反射 ,降低了流过 s/ FI/ d结的直流 Josephson电流 ,直流Josephson电流 I随温度 T、相位差φ的变化曲线强烈地依赖于 d波超导体的晶轴方位  相似文献   

5.
We explore the role of phase fluctuations in a three-dimensional s-wave superconductor, NbN, as we approach the critical disorder for destruction of the superconducting state. Close to critical disorder, we observe a finite gap in the electronic spectrum which persists at temperatures well above T(c). The superfluid density is strongly suppressed at low temperatures and evolves towards a linear-T variation at higher temperatures. These observations provide strong evidence that phase fluctuations play a central role in the formation of a pseudogap state in a disordered s-wave superconductor.  相似文献   

6.
Within a scattering framework, a theoretical study is presented for the spin-polarized quasiparticle transport in ferromagnet/d-wave superconductor junctions. We find that the subgap conductance behavior is qualitatively different from a nonmagnetic junction, and can also be significantly different from those of a ferromagnet/s-wave junction. For a ballistic ferromagnet/d-wave superconductor junction, under appropriate conditions, a zero-bias conductance minimum could be achieved. In addition, a conductance maximum at finite bias could be evolved by interfacial scattering. For a normal-metal/ferromagnet/d-wave superconductor junction, conductance resonances are predicted.  相似文献   

7.
We construct a family of solutions of the holographic insulator/superconductor phase transitions with the excited states in the AdS soliton background by using both the numerical and analytical methods. The interesting point is that the improved SturmLiouville method can not only analytically investigate the properties of the phase transition with the excited states, but also the distributions of the condensed fields in the vicinity of the critical point. We observe that, regardless of the type of the holographic model, the excited state has a higher critical chemical potential than the corresponding ground state, and the difference of the dimensionless critical chemical potential between the consecutive states is around 2.4, which is different from the finding of the metal/superconductor phase transition in the Ad S black hole background. Furthermore, near the critical point, we find that the phase transition of the systems is of the second order and a linear relationship exists between the charge density and chemical potential for all the excited states in both s-wave and p-wave insulator/superconductor models.  相似文献   

8.
Near a Mott transition, strong electron correlations may enhance Cooper pairing. This is demonstrated in the dynamical mean field theory solution of a twofold-orbital degenerate Hubbard model with an inverted on-site Hund rule exchange, favoring local spin-singlet configurations. Close to the Mott insulator (which here is a local version of a valence bond insulator) a pseudogap non-Fermi-liquid metal, a superconductor, and a normal metal appear, in striking similarity with the physics of cuprates. The strongly correlated s-wave superconducting state has a larger Drude weight than the corresponding normal state. The role of the impurity Kondo problem is underscored.  相似文献   

9.
We investigate the tunneling conductance on the surface of topological insulator ferromagnet (F)/insulator (I)/superconductor (S) junction where superconducting type is either s- or d-wave paring. Topological insulators (TI) are insulating in bulk but conducting on the surface with the Dirac-fermion-like carriers. In contrast to the Dirac fermions in graphene, relativistic mass of the Dirac fermions in TI can be easily caused by applying magnetic field perpendicular to its surface. In this work, we emphatically focus on the effect of the magnetically-induced relativistic mass on the tunneling conductance of a TI-based F/I/S junction. We find that, due to the effect of spinless fermions as carriers in TI, the behavior of the tunneling conductance in a TI-based NIS junction resembles that in a nonmagnetic graphene-based NIS junction. In case of the d-wave paring F/I/S junction, increasing magnetically-induced relativistic mass changes the zero bias conductance dip (peak) to a zero bias conductance peak (dip). This behavior cannot be observed in a graphene-based F/I/S junction.  相似文献   

10.
Recently, a new phenomenological Hamiltonian has been proposed to describe the superconducting cuprates. This so-called Gossamer Hamiltonian is an apt model for a superconductor with strong on-site Coulomb repulsion between the electrons. It is shown that at half-filling the Gossamer superconductor with strong repulsion is unstable toward an antiferromagnetic insulator. The superconducting state undergoes a quantum phase transition to an antiferromagnetic insulator as one increases the on-site Coulomb repulsion. Near the transition the Gossamer superconductor becomes spectroscopically indistinguishable from the insulator.  相似文献   

11.
We investigate superconductivity that may exist in the doped BaCoSO, a multi-orbital Mott insulator with a strong antiferromagnetic ground state. The superconductivity is studied in both t-J type and Hubbard type multi-orbital models by mean field approach and random phase approximation (RPA) analysis. Even if there is no C4 rotational symmetry, it is found that the system still carries a d-wave like pairing symmetry state with gapless nodes and sign changed superconducting order parameters on Fermi surfaces. The results are largely doping insensitive. In this superconducting state, the three \({t_{{2_g}}}\) orbitals have very different superconducting form factors in momentum space. In particular, the intra-orbital pairing of the \({d_{{x^2} - {y^2}}}\) orbital has an s-wave like pairing form factor. The two methods also predict very different pairing strength on different parts of Fermi surfaces. These results suggest that BaCoSO and related materials can be a new ground to test and establish fundamental principles for unconventional high temperature superconductivity.  相似文献   

12.
Using model calculations of a disordered d-wave superconductor with on-site Hubbard repulsion, we show how dopant disorder can stabilize novel states with antiferromagnetic order. We find that the critical strength of correlations or impurity potential necessary to create an ordered magnetic state in the presence of finite disorder is reduced compared to that required to create a single isolated magnetic droplet. This may explain why, in cuprates such as La2-xSrxCuO4, low-energy probes have identified a static magnetic component which persists well into the superconducting state, whereas, in cleaner systems such as YBa(2)Cu(3)O(6+delta), it is absent or minimal.  相似文献   

13.
通过外加塞曼磁场在d波超导中,研究磁场对d波超导及其正常金属/d波超导结中隧道谱的影响。研究表明(1)塞曼磁场能使能隙变小,且随着磁场变大,超导态会变为正常态,产生一级相变;(2)塞曼磁场可导致零偏压电导峰劈裂,劈裂宽度为2h0(h0为塞曼能)。  相似文献   

14.
We investigate systematically the effect of the nonlinear correction to the usual Maxwell electrodynamics on the holographic dual models in the backgrounds of AdS black hole and AdS soliton. Considering three types of typical nonlinear electrodynamics, we observe that in the black hole background the higher nonlinear electrodynamics correction makes the condensation harder to form and changes the expected relation in the gap frequency, which is similar to that caused by the curvature correction. However, in strong contrast to the influence of the curvature correction, we find that in the AdS soliton background the nonlinear electrodynamics correction will not affect the properties of the holographic superconductor and insulator phase transitions, which may be a quite general feature for the s-wave holographic superconductor/insulator system.  相似文献   

15.
We investigate theoretically transport characteristics in a graphene-based pseudospinmagnet/superconductor junction, including the s-wave and the d-wave pairing symmetry potential in the superconducting region. It is found that the pseudospin polarization, in sharp contrast to spin polarization in the graphene-based ferromagnet/superconductor junction, holds no influence on the specular Andreev reflection for a negligible Fermi energy. Furthermore, the Fano factor is cru-ially affected by the zero bias state. Therefore, we suggest here that the findings could shed light on the realization of graphene-based pseudospintronics devices and provide a new way to detect the specular Andreev reflection and the zero bias state in the actual experiments.  相似文献   

16.
We present a time-reversal invariant s-wave superconductor supporting Majorana edge modes. The multiband character of the model together with spin-orbit coupling are key to realizing such a topological superconductor. We characterize the topological phase diagram by using a partial Chern number sum, and show that the latter is physically related to the parity of the fermion number of the time-reversal invariant modes. By taking the self-consistency constraint on the s-wave pairing gap into account, we also establish the possibility of a direct topological superconductor-to-topological insulator quantum phase transition.  相似文献   

17.
Because of the absence of a center of inversion in some superconducting compounds, a p-wave admixture to the dominant d-wave (or s) order parameter must exist. If time reversal is also violated, an allowed invariant is the product of the d wave (or s wave), p wave, and an appropriately directed current. We show that this leads to a new and remarkable property of the Josephson current for tunneling into a s-wave superconductor along the direction parallel to the axis of the p-wave component. These ideas are applied to the heavy-fermion compounds which lack center of inversion due to crystalline symmetry, as well as time-reversal symmetry, such as CePt(3)Si. They also apply to the superconducting state of the cuprates in the pseudogap region of the phase diagram where in the normal phase some experiments have detected a time-reversal and inversion symmetry broken phase.  相似文献   

18.
We present tunneling spectroscopy measurements that directly reveal the existence of a superconducting gap in the insulating state of homogenously disordered amorphous indium oxide films. Two films on both sides of the disorder induced superconductor to insulator transition show the same energy gap scale. This energy gap persists up to relatively high magnetic fields and is observed across the magnetoresistance peak typical of disordered superconductors. The results provide useful information for understanding the nature of the insulating state in the disorder induced superconductor to insulator transition.  相似文献   

19.
The mutual interplay between superconductivity and magnetism in superconductor/ferromagnet heterostructures may give rise to unusual proximity effects beyond current knowledge. Especially, spin-triplet Cooper pairs could be created at carefully engineered superconductor/ferromagnet interfaces. Here we report a giant proximity effect on spin dynamics in superconductor/ferromagnet/superconductor Josephson junctions. Below the superconducting transition temperature T_C, the ferromagnetic resonance field at X-band(~9.0 GHz) shifts rapidly to a lower field with decreasing temperature. In strong contrast, this phenomenon is absent in ferromagnet/superconductor bilayers and superconductor/insulator/ferromagnet/superconductor multilayers. Such an intriguing phenomenon can not be interpreted by the conventional Meissner effect. Instead, we propose that the strong influence on spin dynamics could be due to spin-transfer torque associated with spin-triplet supercurrents in ferromagnetic Josephson junctions with precessing magnetization.  相似文献   

20.
We develop a method to solve the Bogoliubov–de Gennes equation for superconductors self-consistently, using the recursion method. The method allows the pairing interaction to be either local or nonlocal corresponding to s-and d-wave superconductivity, respectively. Using this method, we examine the properties of various SIN and DIN interfaces. In particular, we self-consistently calculate the spatially varying density of states and the superconducting order parameter. We see that changing the strength of the insulating barrier at the interface, does not, in the case of an s-wave superconductor, dramatically change the low-energy local density of states in the superconducting region near the interface. This is in stark contrast to what we see in the case of a DIN interface where the local particle density of states is changed dramatically. Hence we deduce that in calculating such properties as the conductance of SIN and DIN structures it is far more important to carry out self-consistent calculations in the d-wave case.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号