首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is established that H. Bohr’s inequality \(\sum\nolimits_{k = 0}^\infty {\left| {{{f^{\left( k \right)} \left( 0 \right)} \mathord{\left/ {\vphantom {{f^{\left( k \right)} \left( 0 \right)} {\left( {2^{{k \mathord{\left/ {\vphantom {k 2}} \right. \kern-\nulldelimiterspace} 2}} k!} \right)}}} \right. \kern-\nulldelimiterspace} {\left( {2^{{k \mathord{\left/ {\vphantom {k 2}} \right. \kern-\nulldelimiterspace} 2}} k!} \right)}}} \right| \leqslant \sqrt 2 \left\| f \right\|_\infty }\) is sharp on the class H .  相似文献   

2.
The nonparametric regression problem has the objective of estimating conditional expectation. Consider the model $$Y = R(X) + Z$$ , where the random variableZ has mean zero and is independent ofX. The regression functionR(x) is the conditional expectation ofY givenX = x. For an estimator of the form $$R_n (x) = \sum\limits_{i = 1}^n {Y_i K{{\left[ {{{\left( {x - X_i } \right)} \mathord{\left/ {\vphantom {{\left( {x - X_i } \right)} {c_n }}} \right. \kern-\nulldelimiterspace} {c_n }}} \right]} \mathord{\left/ {\vphantom {{\left[ {{{\left( {x - X_i } \right)} \mathord{\left/ {\vphantom {{\left( {x - X_i } \right)} {c_n }}} \right. \kern-\nulldelimiterspace} {c_n }}} \right]} {\sum\limits_{i = 1}^n {K\left[ {{{\left( {x - X_i } \right)} \mathord{\left/ {\vphantom {{\left( {x - X_i } \right)} {c_n }}} \right. \kern-\nulldelimiterspace} {c_n }}} \right]} }}} \right. \kern-\nulldelimiterspace} {\sum\limits_{i = 1}^n {K\left[ {{{\left( {x - X_i } \right)} \mathord{\left/ {\vphantom {{\left( {x - X_i } \right)} {c_n }}} \right. \kern-\nulldelimiterspace} {c_n }}} \right]} }}} $$ , we obtain the rate of strong uniform convergence $$\mathop {\sup }\limits_{x\varepsilon C} \left| {R_n (x) - R(x)} \right|\mathop {w \cdot p \cdot 1}\limits_ = o({{n^{{1 \mathord{\left/ {\vphantom {1 {(2 + d)}}} \right. \kern-\nulldelimiterspace} {(2 + d)}}} } \mathord{\left/ {\vphantom {{n^{{1 \mathord{\left/ {\vphantom {1 {(2 + d)}}} \right. \kern-\nulldelimiterspace} {(2 + d)}}} } {\beta _n \log n}}} \right. \kern-\nulldelimiterspace} {\beta _n \log n}}),\beta _n \to \infty $$ . HereX is ad-dimensional variable andC is a suitable subset ofR d .  相似文献   

3.
The trigonometric polynomials of Fejér and Young are defined by $S_n (x) = \sum\nolimits_{k = 1}^n {\tfrac{{\sin (kx)}} {k}}$S_n (x) = \sum\nolimits_{k = 1}^n {\tfrac{{\sin (kx)}} {k}} and $C_n (x) = 1 + \sum\nolimits_{k = 1}^n {\tfrac{{\cos (kx)}} {k}}$C_n (x) = 1 + \sum\nolimits_{k = 1}^n {\tfrac{{\cos (kx)}} {k}}, respectively. We prove that the inequality $\left( {{1 \mathord{\left/ {\vphantom {1 9}} \right. \kern-\nulldelimiterspace} 9}} \right)\sqrt {15} \leqslant {{C_n \left( x \right)} \mathord{\left/ {\vphantom {{C_n \left( x \right)} {S_n \left( x \right)}}} \right. \kern-\nulldelimiterspace} {S_n \left( x \right)}}$\left( {{1 \mathord{\left/ {\vphantom {1 9}} \right. \kern-\nulldelimiterspace} 9}} \right)\sqrt {15} \leqslant {{C_n \left( x \right)} \mathord{\left/ {\vphantom {{C_n \left( x \right)} {S_n \left( x \right)}}} \right. \kern-\nulldelimiterspace} {S_n \left( x \right)}} holds for all n ≥ 2 and x ∈ (0, π). The lower bound is sharp.  相似文献   

4.
The paper describes a systematic computational study of the prime counting function π(x) and three of its analytic approximations: the logarithmic integral \({\text{li}}{\left( x \right)}: = {\int_0^x {\frac{{dt}}{{\log \,t}}} }\), \({\text{li}}{\left( x \right)} - \frac{1}{2}{\text{li}}{\left( {{\sqrt x }} \right)}\), and \(R{\left( x \right)}: = {\sum\nolimits_{k = 1}^\infty {{\mu {\left( k \right)}{\text{li}}{\left( {x^{{1 \mathord{\left/ {\vphantom {1 k}} \right. \kern-\nulldelimiterspace} k}} } \right)}} \mathord{\left/ {\vphantom {{\mu {\left( k \right)}{\text{li}}{\left( {x^{{1 \mathord{\left/ {\vphantom {1 k}} \right. \kern-\nulldelimiterspace} k}} } \right)}} k}} \right. \kern-\nulldelimiterspace} k} }\), where μ is the Möbius function. The results show that π(x)x) for 2≤x≤1014, and also seem to support several conjectures on the maximal and average errors of the three approximations, most importantly \({\left| {\pi {\left( x \right)} - {\text{li}}{\left( x \right)}} \right|} < x^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}}\) and \( - \frac{2}{5}x^{{3 \mathord{\left/ {\vphantom {3 2}} \right. \kern-\nulldelimiterspace} 2}} < {\int_2^x {{\left( {\pi {\left( u \right)} - {\text{li}}{\left( u \right)}} \right)}du < 0} }\) for all x>2. The paper concludes with a short discussion of prospects for further computational progress.  相似文献   

5.
Forn a positive integer letp(n) denote the number of partitions ofn into positive integers and letp(n,k) denote the number of partitions ofn into exactlyk parts. Let , thenP(n) represents the total number of parts in all the partitions ofn. In this paper we obtain the following asymptotic formula for .  相似文献   

6.
LetL(x) denote the number of square-full integers not exceedingx. It is well-known that $$L\left( x \right) \sim \frac{{\zeta \left( {{3 \mathord{\left/ {\vphantom {3 2}} \right. \kern-\nulldelimiterspace} 2}} \right)}}{{\zeta \left( 3 \right)}}x^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} + \frac{{\zeta \left( {{2 \mathord{\left/ {\vphantom {2 3}} \right. \kern-\nulldelimiterspace} 3}} \right)}}{{\zeta \left( 2 \right)}}x^{{1 \mathord{\left/ {\vphantom {1 3}} \right. \kern-\nulldelimiterspace} 3}} ,$$ whereζ(s) denotes the Riemann Zeta function, LetΔ(x) denote the error function in the asymptotic formula forL(x). On the assumption of the Riemann hypothesis (R.H.), it is known that $$\Delta x = O\left( {x^{13/81 + 8} } \right)$$ for everyε > 0. In this paper, we prove on the assumption of R.H. that $$\frac{1}{x}\int\limits_x^1 {\left| {\Delta \left( t \right)} \right|dt = O\left( {x^{1/10 + ^8 } } \right)} .$$ In fact, we prove a more general result. We conjecture that $$\Delta x = O\left( {x^{1/10 + ^8 } } \right)$$ under the assumption of the R.H.  相似文献   

7.
Let X, X1 , X2 , . . . be i.i.d. random variables, and set Sn = X1 +···+Xn , Mn = maxk≤n |Sk|, n ≥1. Let an = o( (n)(1/2)/logn). By using the strong approximation, we prove that, if EX = 0, VarX = σ2 0 and E|X| 2+ε ∞ for some ε 0, then for any r 1, lim ε1/(r-1)(1/2) [ε-2-(r-1)]∞∑n=1 nr-2 P{Mn ≤εσ (π2n/(8log n))(1/2) + an } = 4/π . We also show that the widest a n is o( n(1/2)/logn).  相似文献   

8.
LetL(x) denote the number of square full integers ≤x. By a square-full integer, we mean a positive integer all of whose prime factors have multiplicity at least two. It is well known that $$\left. {L(x)} \right| \sim \frac{{\zeta ({3 \mathord{\left/ {\vphantom {3 2}} \right. \kern-\nulldelimiterspace} 2})}}{{\zeta (3)}}x^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} + \frac{{\zeta ({2 \mathord{\left/ {\vphantom {2 3}} \right. \kern-\nulldelimiterspace} 3})}}{{\zeta (2)}}x^{{1 \mathord{\left/ {\vphantom {1 3}} \right. \kern-\nulldelimiterspace} 3}} ,$$ where ζ(s) denotes the Riemann Zeta function. Let Δ(x) denote the error function in the asymptotic formula forL(x). On the basis of the Riemann hypothesis (R.H.), it is known that \(\Delta (x) = O(x^{\tfrac{{13}}{{81}} + \varepsilon } )\) for every ε>0. In this paper, we prove the following results on the assumption of R.H.: (1) $$\frac{1}{x}\int\limits_1^x {\Delta (t)dt} = O(x^{\tfrac{1}{{12}} + \varepsilon } ),$$ (2) $$\int\limits_1^x {\frac{{\Delta (t)}}{t}\log } ^{v - 1} \left( {\frac{x}{t}} \right) = O(x^{\tfrac{1}{{12}} + \varepsilon } )$$ for any integer ν≥1. In fact, we prove some general results and deduce the above from them. On the basis of (1) and (2) above, we conjecture that \(\Delta (x) = O(x^{{1 \mathord{\left/ {\vphantom {1 {12}}} \right. \kern-0em} {12}} + \varepsilon } )\) under the assumption of R.H.  相似文献   

9.
В работе рассматрива ется асимптотика в ме трике пространстваL p (T N ),T N ={xR N , 0<x i <2π} ядра Р исса-Бохнера $$\Theta ^s \left( {x, \lambda } \right) = \left( {2\pi } \right)^{ - N} \mathop \Sigma \limits_{\left| n \right|^2< \lambda } \left( {1 - \frac{{\left| n \right|^2 }}{\lambda }} \right)^s e^{inx} \left( {x \in T^N , s \geqq 0, \lambda \geqq 0} \right)$$ при λ→∞. Доказывается, что есл иN≧4,p≧2N/(N?1) иs>N((N?1)/2N?1/p), то для произвольной точкиxT N существует п остояннаяC=C p (x, s) такая, что выполняется неравен ство $$\parallel \Theta ^s \left( {x - y, \lambda } \right) - \left( {2\pi } \right)^{ - {N \mathord{\left/ {\vphantom {N 2}} \right. \kern-\nulldelimiterspace} 2}} 2^s \Gamma \left( {s + 1} \right)\lambda ^{{N \mathord{\left/ {\vphantom {N 2}} \right. \kern-\nulldelimiterspace} 2}} J_{{N \mathord{\left/ {\vphantom {N {2 + s}}} \right. \kern-\nulldelimiterspace} {2 + s}}} {{\left( {\left| {x - y} \right|\sqrt \lambda } \right)} \mathord{\left/ {\vphantom {{\left( {\left| {x - y} \right|\sqrt \lambda } \right)} {\left( {\left| {x - y} \right|\sqrt \lambda } \right)^{{N \mathord{\left/ {\vphantom {N {2 + s}}} \right. \kern-\nulldelimiterspace} {2 + s}}} \parallel _{L_p \left( {T^N } \right)} \leqq }}} \right. \kern-\nulldelimiterspace} {\left( {\left| {x - y} \right|\sqrt \lambda } \right)^{{N \mathord{\left/ {\vphantom {N {2 + s}}} \right. \kern-\nulldelimiterspace} {2 + s}}} \parallel _{L_p \left( {T^N } \right)} \leqq }}$$ где нормаL p (T N ) берется по пе ременнойy, а черезJ v обозначена функция Б есселя первого рода порядкаv. СлучаиN=2 иN=3 рассматриваются отдельно.  相似文献   

10.
We study inequalities of the form $$ \tau (w(A)^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} f(A)w(A)^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} ) \leqslant \tau (w(A)^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} f(B)w(A)^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} ),A \leqslant B $$ where τ is a trace on a von Neumann algebra or a C*-algebra, A and B are self-adjoint elements of the algebra in question, f and w are real-valued functions, and the “weight” function w is nonnegative.  相似文献   

11.
Kayumov  I. R. 《Mathematical Notes》2004,76(3-4):472-477
In this paper, the following sharp estimate is proved: $$\int_{0}^{2{\pi }} {\left| {F\prime \left( {e^{i\theta } } \right)} \right|^p d\theta \leqslant \sqrt {\pi } 2^{1 + p} \frac{{\gamma \left( {{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2} + {p \mathord{\left/ {\vphantom {p 2}} \right. \kern-\nulldelimiterspace} 2}} \right)}} {{\gamma \left( {1 + {p \mathord{\left/ {\vphantom {p 2}} \right. \kern-\nulldelimiterspace} 2}} \right)}}} ,\quad p > - 1,$$ where F is the conformal mapping of the domain $D^ - = \left\{ {\zeta :\left| \zeta \right| > 1} \right\}$ onto the exterior of a convex curve, with $F\prime \left( \infty \right) = 1$ . For p=1, this result is due to Pólya and Shiffer. We also obtain several generalizations of this estimate under other geometric assumptions about the structure of the domain F(D -).  相似文献   

12.
Sunto Si studia il problema della determinazione di una soluzione dell'equazione ak(x)∂ku/∂xk=f(x, y) entro la semistriscia a≤x≤b, y≥0, che assuma assegnati valori per y=0 e per x=a, x1, x2, b (a<x1<x2<b). Analogamente si studia il problema della determinazione di una soluzione dell' equazione ak(x)∂ku/∂xk+b(x)∂u/∂y=f(x,y), entro la medesima semistriscia, cha assuma assegnati valori per y=0 e per x=a, x1, x2, b e la cui ∂/∂y assuma assegnati valori per y=0. A Giovanni Sansone nel suo 70mo compleanno.  相似文献   

13.
A. Ivić  W. Zhai 《Mathematical Notes》2010,88(3-4):338-346
It is proved that, if k ≥ 2 is a fixed integer and 1 ? H ≤ (1/2)X, then $$ \int_{X - H}^{X + H} {\Delta _k^4 \left( x \right) } dx \ll _\varepsilon X^\varepsilon \left( {HX^{{{\left( {2k - 2} \right)} \mathord{\left/ {\vphantom {{\left( {2k - 2} \right)} k}} \right. \kern-\nulldelimiterspace} k}} + H^{{{\left( {2k - 3} \right)} \mathord{\left/ {\vphantom {{\left( {2k - 3} \right)} {\left( {2k + 1} \right)}}} \right. \kern-\nulldelimiterspace} {\left( {2k + 1} \right)}}} X^{{{\left( {8k - 8} \right)} \mathord{\left/ {\vphantom {{\left( {8k - 8} \right)} {\left( {2k + 1} \right)}}} \right. \kern-\nulldelimiterspace} {\left( {2k + 1} \right)}}} } \right), $$ where Δ k (x) is the error term in the general Dirichlet divisor problem. The proof uses a Voronoï-type formula for Δ k (x), and the bound of Robert-Sargos for the number of integers when the difference of four kth roots is small. The size of the error term in the asymptotic formula for the mth moment of Δ2(x) is also investigated.  相似文献   

14.
It is shown by analytical means that, if one assumes the Riemann hypothesis, the asymptotic formula $$\sum\limits_{n \leqslant x} {\omega (n) = x 1n1n } x + B - x\int_l^{x^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} } {\frac{{\{ t\} }}{{t^2 (1n x - 1n t)}}dt + O(x^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2} + \varepsilon } )} $$ holds. This improves a result ofB. Saffari, who got a weaker error term by using the Dirichlet “hyperbola method”. The above formula, in turn, implies the Riemann hypothesis.  相似文献   

15.
For functions f which are bounded throughout the plane R2 together with the partial derivatives f(3,0) f(0,3), inequalities $$\left\| {f^{(1,1)} } \right\| \leqslant \sqrt[3]{3}\left\| f \right\|^{{\raise0.7ex\hbox{$1$} \!\mathord{\left/ {\vphantom {1 3}}\right.\kern-\nulldelimiterspace}\!\lower0.7ex\hbox{$3$}}} \left\| {f^{(3,0)} } \right\|^{{\raise0.7ex\hbox{$1$} \!\mathord{\left/ {\vphantom {1 3}}\right.\kern-\nulldelimiterspace}\!\lower0.7ex\hbox{$3$}}} \left\| {f^{(0,3)} } \right\|^{{\raise0.7ex\hbox{$1$} \!\mathord{\left/ {\vphantom {1 3}}\right.\kern-\nulldelimiterspace}\!\lower0.7ex\hbox{$3$}}} ,\left\| {f_e^{(2)} } \right\| \leqslant \sqrt[3]{3}\left\| f \right\|^{{\raise0.7ex\hbox{$1$} \!\mathord{\left/ {\vphantom {1 3}}\right.\kern-\nulldelimiterspace}\!\lower0.7ex\hbox{$3$}}} \left( {\left\| {f^{(3,0)} } \right\|^{{\raise0.7ex\hbox{$1$} \!\mathord{\left/ {\vphantom {1 3}}\right.\kern-\nulldelimiterspace}\!\lower0.7ex\hbox{$3$}}} \left| {e_1 } \right| + \left\| {f^{(0,3)} } \right\|^{{\raise0.7ex\hbox{$1$} \!\mathord{\left/ {\vphantom {1 3}}\right.\kern-\nulldelimiterspace}\!\lower0.7ex\hbox{$3$}}} \left| {e_2 } \right|} \right)^2 ,$$ are established, where ∥?∥denotes the upper bound on R2 of the absolute values of the corresponding function, andf fe (2) is the second derivative in the direction of the unit vector e=(e1, e2). Functions are exhibited for which these inequalities become equalities.  相似文献   

16.
Let \(T(x) = \sum\limits_{ord(G) \leqq x} {t(G),} \) , wheret(G) define the number of direct factors of a finite Abelian group.E. Krätzel ([5]) defined a remainderΔ 1(x) in the asymptotic ofT(x) and proved $$\Delta _1 (x)<< x^{{5 \mathord{\left/ {\vphantom {5 {12}}} \right. \kern-\nulldelimiterspace} {12}}} \log ^4 x.$$ Using two different methods to estimate a special three-dimensional exponential sum we get the better results $$\Delta _1 (x)<< x^{{{282} \mathord{\left/ {\vphantom {{282} {683}}} \right. \kern-\nulldelimiterspace} {683}}} \log ^4 x$$ and $$\Delta _1 (x)<< x^{{{45} \mathord{\left/ {\vphantom {{45} {109}}} \right. \kern-\nulldelimiterspace} {109}} + \varepsilon } (\varepsilon > 0).$$   相似文献   

17.
Let Θ be a bounded open set in ℝ n , n ⩾ 2. In a well-known paper Indiana Univ. Math. J., 20, 1077–1092 (1971) Moser found the smallest value of K such that
$ \sup \left\{ {\int_\Omega {\exp \left( {\left( {\frac{{\left| {f(x)} \right|}} {K}} \right)^{{n \mathord{\left/ {\vphantom {n {(n - 1)}}} \right. \kern-\nulldelimiterspace} {(n - 1)}}} } \right):f \in W_0^{1,n} (\Omega ),\left\| {\nabla f} \right\|_{L^n } \leqslant 1} } \right\} < \infty $ \sup \left\{ {\int_\Omega {\exp \left( {\left( {\frac{{\left| {f(x)} \right|}} {K}} \right)^{{n \mathord{\left/ {\vphantom {n {(n - 1)}}} \right. \kern-\nulldelimiterspace} {(n - 1)}}} } \right):f \in W_0^{1,n} (\Omega ),\left\| {\nabla f} \right\|_{L^n } \leqslant 1} } \right\} < \infty   相似文献   

18.
We are considering a class S of functions F(z), F(0) = 0, F′(0) = 1 that are univalent and regular in the circle ¦z¦ < 1, and its subclasses s h * and K of starlike functions of order h and of convex functions respectively. Among others, we establish the following results: If F(z)εs and 0 < α < 1, then IfF (z) ε s (0 < a < 1) and $$\begin{gathered} 1 + \operatorname{Re} {{z_1 F^n \left( {z_1 } \right)} \mathord{\left/ {\vphantom {{z_1 F^n \left( {z_1 } \right)} {F'\left( {z_1 } \right)}}} \right. \kern-\nulldelimiterspace} {F'\left( {z_1 } \right)}} = \operatorname{Re} {{\alpha z_1 F''\left( {\alpha z_1 } \right)} \mathord{\left/ {\vphantom {{\alpha z_1 F''\left( {\alpha z_1 } \right)} {F'\left( {\alpha z_1 } \right)}}} \right. \kern-\nulldelimiterspace} {F'\left( {\alpha z_1 } \right)}} \hfill \\ \left( {2 - \sqrt 3< \left| {z_1 } \right| = r< 1} \right) \hfill \\ \end{gathered} $$ then we obtain the domain of values of the point αz1.  相似文献   

19.
We suggest a new approach to studying the isochronism of the system
${{dx} \mathord{\left/ {\vphantom {{dx} {dt}}} \right. \kern-\nulldelimiterspace} {dt}} = - y + p_n (x,y),{{dy} \mathord{\left/ {\vphantom {{dy} {dt}}} \right. \kern-\nulldelimiterspace} {dt}} = x + q_n (x,y),$
where p n and q n are homogeneous polynomials of degree n. This approach is based on the normal form
${{dX} \mathord{\left/ {\vphantom {{dX} {dt}}} \right. \kern-\nulldelimiterspace} {dt}} = - Y + XS(X,Y),{{dY} \mathord{\left/ {\vphantom {{dY} {dt}}} \right. \kern-\nulldelimiterspace} {dt}} = X + YS(X,Y)$
and its analog in polar coordinates. We prove a theorem on sufficient conditions for the strong isochronism of a center and a focus for the reduced system and obtain examples of centers with strong isochronism of degrees n = 4, 5. The present paper is the first to give examples of foci with strong isochronism for the system in question.
  相似文献   

20.
We obtain the new exact Kolmogorov-type inequality
for 2-periodic functions and any k, r N, k < r. We present applications of this inequality to problems of approximation of one class of functions by another class and estimates of K-functional type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号