首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
High-level ab initio calculations have been carried out to study weak CH/pi interactions and as a check of the CHARMM force field for aromatic amino acids. Comparisons with published data indicate that the MP2/cc-pVTZ level of theory is suitable for calculations of CH/pi interaction, including the T-shape benzene dimer. This level of theory was, therefore, applied to investigate CH/pi interactions between ethene or cis-2-butene and benzene in a variety of orientations. In addition, complexes between ethene and a series of model compounds (toluene, methylindole and p-cresol) representing the aromatic amino acids were studied motivated by the presence of CH/pi interactions in biological systems. Ab initio binding energies were compared to the binding energies obtained with the CHARMM22 force field. In the majority of orientations, CHARMM22 reproduces the preferred binding modes, with excellent agreement for the benzene dimer. Small discrepancies found in the calculations involving methylindole along with a survey of published thermodynamic data for the aromatic amino acids prompted additional optimization of the tryptophan force field. Partial atomic charges, Lennard-Jones parameters, and force constants were improved to obtain better intra- and intermolecular properties, with significant improvements obtained in the reproduction of experimental heats of sublimation for indole and free energies of aqueous solvation for methylindole.  相似文献   

2.
Understanding noncovalent interactions on the surfaces of carbon nanostructures (CNSs) is of fundamental importance and also has implications in nano‐ and biotechnology. The interactions of aromatic compounds such as benzene, naphthalene, and aromatic amino acids with CNSs of varying diameter, chirality, and curvature were systematically explored by using density functional theory. Planar graphene exhibits stronger binding affinity than curved carbon nanotubes (CNTs), whereas zigzag CNTs appear to show stronger binding affinity than armchair CNTs. For hydrocarbons, there exist two competing modes, namely, π–π stacking interactions and CH ??? π interactions, which bring the aromatic motifs into parallel and perpendicular dispositions with respect to the CNSs, respectively. Our results reveal that π–π stacking interactions override CH ??? π interactions in such cases. However, in the case of aromatic amino acids, π–π interactions can exist simultaneously along with a range of other interactions, including CH ??? π. The polarizability and HOMO energy of the CNSs were found to be the key factors that determine the binding energies. The HOMO–LUMO energy gaps of the CNSs were found to be undisturbed by the noncovalent functionalization of the aromatic molecules.  相似文献   

3.
The CH/pi hydrogen bond is a weak molecular force occurring between CH groups (soft acids) and pi-systems (soft bases), and has been recognized to be important in the interaction of proteins with their specific ligands. For instance, it is well known that Src homology-2 protein (SH2) recognizes its specific pTyr peptide in two key regions, pTyr-binding region and specificity-determining region, by the use of attractive molecular forces, including the CH/pi hydrogen bond. We hypothesized that the CH/pi hydrogen bond plays a key role in determining the selectivity of SH2 proteins, and studied this issue by the ab initio fragment molecular orbital (FMO) method. The FMO calculations were carried out, at the HF/6-31G* and MP2/6-31G* level, for SH2 domains of Src, Grb2, P85alpha(N), Syk, and SAP, in complex with corresponding pTyr peptides. CH/pi hydrogen bonds have in fact been found to be important in stabilizing the structure of the complexes. We conclude that the CH/pi hydrogen bond plays an indispensable role in the recognition of SH2 domains with their specific pTyr peptides, thus playing a vital role in the signal transduction system.  相似文献   

4.
A novel synthetic basic resolving agent, cis-1-aminobenz[f]indan-2-ol (ABI), was rationally designed by introducing effective CH/pi interaction sites to cis-1-aminoindan-2-ol (AI), whose chiral recognition ability has been reported from our laboratory. ABI was applicable to a wide variety of racemic arylalkanoic acids and showed moderate to excellent chiral recognition ability, which was obviously higher than that of AI. The fundamental and important role of CH/pi interactions, such as tunable CH(sp(2))/pi and CH(sp(3))/pi interactions, in the chiral recognition by ABI was revealed by X-ray crystallographic study.  相似文献   

5.
Three-state conical intersections have been located and characterized for cytosine and its analog 5-methyl-2-pyrimidinone using multireference configuration-interaction ab initio methods. The potential energy surfaces for each base contain three different three-state intersections: two different S(0)-S(1)-S(2) intersections (gs/pi pi(*)/n(N)pi(*) and gs/pi pi(*)/n(O)pi(*)) and an S(1)-S(2)-S(3) intersection (pi pi(*)/n(N)pi(*)/n(O)pi(*)). Two-state seam paths from these intersections are shown to be connected to previously reported two-state conical intersections. Nonadiabatic coupling terms have been calculated, and the effects of the proximal third state on these quantities are detailed. In particular, it is shown that when one of these loops incorporates more than one seam point, there is a profound and predictable effect on the phase of the nonadiabatic coupling terms, and as such provides a diagnostic for the presence and location of additional seams. In addition, it is shown that each of the three three-state conical intersections located on cytosine and 5-methyl-2-pyrimidinone is qualitatively similar between the two bases in terms of energies and character, implying that, like with the stationary points and two-state conical intersections previously reported for these two bases, there is an underlying pattern of energy surfaces for 2-pyrimidinone bases, in general, and this pattern also includes three-state conical intersections.  相似文献   

6.
The conformational behavior of designed macrocyclic naphthalenophanes (1a,b and 2a,b) derived from amino acids (Phe and Val) has been used for studying NH...pi interactions. The cycles having 16- and 17-membered rings showed a dynamic process within the NMR time scale, produced by the flipping of the aromatic naphthalene moiety with respect to the macrocyclic main plane. We used the temperature dependence of 1H NMR to obtain activation parameters of the energetic barrier for the process (variable temperature NMR and line shape analysis). The rate of the movement clearly depends on the macrocyclic ring size and, more interestingly, on the nature of the peptidomimetic side chain, the energetic barrier being higher for the compounds bearing aromatic side chains. A largely negative entropic contribution to the free energy of activation was observed, with clear differences due to the side chain nature. Molecular modeling studies suggest that the aromatic rings interact with intramolecularly H-bonded amide NH groups, protecting them from solvation and thus leading to a larger unfavorable activation entropy. This NH...pi interaction has been exploited for the preparation of new systems (1c and meso-1b) with designed conformational preferences, in which aromatic rings tend to fold over amide NH groups. Thus, these minimalistic molecular rotors have served us as simple model systems for the study of NH...pi interactions and their implication in the folding of peptide-like molecules.  相似文献   

7.
Kinetics and mechanism of transaldimination of amino acids and aromatic amines with pyridoxal have been studied by means of UV spectroscopy and polarimetry. It has been shown that aminal intermediates are formed in reaction of the Schiff’s bases with p-aminobenzoic acid and β-alanine. The structure of aminal and Schiff’s base is determined by the spatial arrangement of the amino acid and aromatic fragments with respect to the pyridine ring plane. The presence of OH and CH2-OH groups in the o-positions in pyridoxal structure turns amino groups by 90° with respect to the pyridine ring. The scheme of Schiff’s bases transaldimination by amino acids and biological amines has been developed according to stereospecific, energy, and geometric factors.  相似文献   

8.
Can a benzene molecule differentiate between two isomeric carbohydrates? It is generally accepted that two factors govern molecular recognition: complementarity and preorganization. Preorganization requires the presence of cavities for positioning the host's groups of complementary nature to those of the guest. This study shows that, in fact, groups should be complementary to recognize each other (for the case presented here, it is controlled by the CH/pi interaction) but preorganization is not essential. Since weak interactions have their origin in dispersion forces, they also have impact on the enthalpic term of the free energy, so it was considered that their participation can be demonstrated by measuring the energy involved. For recognition to happen, two conditions must be satisfied: specificity and associated stabilizing energy. In this study we evaluated the heat of dissolution of different carbohydrates such as methyl 2,3,4,6-tetra-O-methyl-alpha-d-mannopyranoside and methyl 2,3,4,6-tetra-O-methyl-beta-d-galactopyranoside using different aromatic solvents. The solvation enthalpies in benzene were -78.8 +/- 3.9 and -88.7 +/- 5.5 kJ mol(-1) for each carbohydrate, respectively; and these values yielded a CH/pi energy of interaction of 9.9 kJ mol(-1). In addition, NMR studies of the effect of the addition of benzene to chloroform solutions of the two carbohydrates showed that benzene specifically interacts with the hydrogen atoms of the pyranose ring at positions 3, 4, and 5 located on the alpha face of the methyl-beta-galactoside, so it is, in fact, able to recognize it. Thus, the interactions between carbohydrates and the aromatic residues of proteins occur in the absence of the confinement generated by the protein structure. By experimentally measuring the energy associated with this interaction and comparing it to theoretical calculations, it was also possible to unequivocally determine the existence of CH/pi interactions between carbohydrates and proteins.  相似文献   

9.
The recent application of histidine–agarose affinity supports in plasmid purification takes advantage of the biorecognition of nucleic acid bases by the histidine ligand. This consideration prompted the need for better understanding the interactions involved in affinity chromatography of plasmid DNA with the histidine–agarose support. In this work, we used synthetic homo‐deoxyoligonucleotides with different sizes (1–30 nucleotides long), to explore the effect of several conditions like hydrophobic character of the individual bases, presence of secondary structures, temperature, pH and salt concentration on the mechanism of retention of nucleic acids to histidine–agarose support. One of the most striking results shows that histidine interacts preferentially with guanine, and the presence of secondary structures on polyA and polyG oligonucleotides has a significant influence on retention. Otherwise, the temperature manipulation has not shown a direct influence on oligonucleotide retention, only inducing conformational changes on secondary structures. Overall, the results obtained provide valuable information for the future development and implementation of histidine and other amino acids as ligands in chromatography for the purification of plasmid DNA and other nucleic acids, by improving the knowledge of the interactions involved as well as of the parameters influencing the retention. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
Ab initio calculations are used to compare the abilities of the aromatic groups of the Phe, Tyr, Trp, and His amino acids (modeled respectively by benzene, phenol, indole, and imidazole) to form H-bonds of three different types. Strongest of all are the conventional H-bonds (e.g., OH..O and OH..N). His forms the strongest such H-bond, followed by Tyr, and then by Trp. Whereas OH..phi bonds formed by the approach of a proton donor to the pi electron cloud above the aromatic system are somewhat weaker, they nonetheless represent an important class of stabilizing interactions. The strengths of H-bonds in this category follow the trend Trp > His > Tyr approximately Phe. CH.O interactions are weaker still, and only those involving His and Trp are strong enough to make significant contributions to protein structure. A protonated residue such as HisH(+) makes for a very powerful proton donor, such that even its CH..O H-bonds are stronger than the conventional H-bonds formed by neutral groups.  相似文献   

11.
The RNA recognition motif (RRM), one of the most common RNA binding domains, contains three highly conserved aromatic amino acids that participate in stacking interactions with RNA bases. We have investigated the contribution of these highly conserved aromatic amino acids to the affinity of the complex formed between the N-terminal RRM of the U1A protein and stem loop 2 of U1 snRNA. Previously, we found that substitution of one of these conserved aromatic amino acids, Phe56, with Ala resulted in a large destabilization of the complex. Here, we have modified A6, the base in stem loop 2 RNA that stacks with Phe56, to compensate for a portion of the destabilization caused by the Phe56Ala mutation. We have designed two modified adenosines, A-3CPh and A-4CPh, in which a phenyl group is linked to the adenosine such that it may replace the phenyl group that is eliminated by the Phe56Ala mutation in the complex. We have found that incorporation of A-3CPh into stem loop 2 RNA stabilizes the complex formed with Phe56Ala by 0.6 kcal/mol, while incorporation of A-4CPh into stem loop 2 RNA stabilizes this complex by 1.8 kcal/mol. Either base modification destabilizes the wild-type complex by 0.8-0.9 kcal/mol. Experiments with other U1A mutant proteins suggest that the stabilization of the complex between the Phe56Ala U1A protein and stem loop 2 RNA is due to a specific interaction between the Phe56Ala U1A protein and A6-4CPh stem loop 2 RNA.  相似文献   

12.
Synchrotron radiation has been used to determine the fluorescence decay parameters of a tryptophan-containing oligopeptide, Lys-Trp-Lys, bound to nucleic acids. All fluorescence decay curves can be fitted by a sum of two exponentials. The two lifetimes very likely correspond to two conformational states of the oligopeptide. The mean fluorescence lifetime of the peptide is not markedly affected upon binding to nucleic acids even though the fluorescence quantum yield is strongly reduced. A model is presented that accounts for the existing fluorescence data: two consecutive complexes are formed both involving electrostatic interactions. In one of the complexes the tryptophyl ring is stacked with the nucleic acid bases and its fluorescence is completely quenched. The other complex emits a fluorescence having characteristics which are similar to those of the free peptide.  相似文献   

13.
We now report the molecular and crystal structure design of muconic ester derivatives on the basis of crystal engineering using halogen-halogen contacts and CH/pi interactions. The solid-state photoreaction pathway of the dibenzyl (Z,Z)-muconates as the 1,3-diene dicarboxylic acid monomers depends on the structure of the ester groups. The substitution of a halogen atom for the aromatic hydrogen of a benzyl group induces topochemical polymerization to produce stereoregular polymers in a crystalline form, whereas the unsubstituted benzyl derivative isomerizes to yield the corresponding E,E isomer under similar conditions. The topochemical polymerization process is directly confirmed by the fact that the single-crystal structures before and after the polymerization are very similar to each other. From the crystal structure analysis for a series of substituted benzyl (Z,Z)- and (E,E)-muconates, it has been revealed that the planar diene moieties are closely packed to form a columnar structure in the crystals. The stacking of the polymerizable monomers is characterized by a stacking distance of 4.9-5.2 A along the columns. This structure is supported by a halogen-halogen interaction between the chlorine or bromine atoms introduced at the p position of the benzyl groups in addition to an aromatic stacking due to the CH/pi interaction between the benzylic methylene hydrogens and aromatic rings. The design of a monomer packing corresponds to the type and position of the introduced halogen atom and also the polymorphs. To make a stacking distance of 5 A using both halogen-halogen and CH/pi interactions as supramolecular synthons is important for the molecular design of muconic ester derivatives appropriate for topochemical polymerization.  相似文献   

14.
A Ru(II) complex with a hydrophobic cavity formed from two 1-naphthoylamide groups was prepared. Its reactions with beta-diketones gave beta-diketonato complexes in which hydrophobic pi-pi or CH/pi interactions were confirmed by NMR spectroscopy and X-ray crystallography. In the case of the asymmetric beta-diketone benzoylacetone, an isomer with a CH/pi interaction was afforded as the sole product owing to thermodynamic control. The reaction was found to involve a novel intramolecular rearrangement from the phenyl-included isomer to the methyl-included one without rupture of Ru-beta-diketonato coordination bonds (activation energy 52 kJ mol(-1)). This indicates that CH/pi interactions can be more favored thermodynamically than pi-pi interactions in a suitable hydrophobic environment.  相似文献   

15.
[Structure: see text]. The crystal structures of a new series of alpha,beta-unsaturated ketoximes, 8-14, carrying the terminal 4-pyridinyl, 3-pyridinyl, or 4-quinolinyl subunit have been investigated by X-ray structural analysis. The dominating intermolecular interaction in all structures, except 11, is the head-tail OH...N hydrogen bond between the oxime moiety and the nitrogen atom of the heterocyclic unit. This intermolecular interaction generates infinite chains, which are cross-linked by CH...O/N/Cl or CH...pi interactions. Compound 10 has been shown to adopt a double-helical structure in the crystalline state. Compound 11 represents the only case where the unexpected head-head NOH...N(OH) hydrogen bonds determine the crystal packing. Both hydrogen-bonding and aromatic interactions stabilize the crystal structures of 8-14.  相似文献   

16.
Neutral imidazole/aminopyridine- and indole/aminopyridine-based receptors, 1 and 2, have been established as highly effective and selective carbohydrate receptors. These receptors effectively recognise neutral carbohydrates through multiple interactions, including neutral hydrogen bonds and CH...pi interactions between the sugar CH groups and the aromatic rings of the receptors. The design of these receptors was inspired by the binding motifs observed in the crystal structures of protein-carbohydrate complexes. The formation of very strong complexes with beta-glucopyranoside 5, beta-maltoside 8, and alpha-maltoside 9 in organic media has been characterised by 1H NMR spectroscopy and confirmed by a second, independent technique, namely fluorescence spectroscopy. The syntheses, molecular-modelling studies, binding properties of the receptors 1 and 2 toward selected mono- and disaccharides as well as comparative binding studies with receptors 3 and 4 are described.  相似文献   

17.
We report on several weak interactions in nucleic acids, which, collectively, can make a nonnegligible contribution to the structure and stability of these molecules. Fragments of DNA were obtained from previously determined accurate experimental geometries and their electron density distributions calculated using density functional theory (DFT). The electron densities were analyzed topologically according to the quantum theory of atoms in molecules (AIM). A web of closed-shell bonding interactions is shown to connect neighboring base pairs in base-pair duplexes and in dinuleotide steps. This bonding underlies the well-known pi-stacking interaction between adjacent nucleic acid bases and is characterized topologically for the first time. Two less widely appreciated modes of weak closed-shell interactions in nucleic acids are also described: (i) interactions between atoms in the bases and atoms belonging to the backbone (base-backbone) and (ii) interactions among atoms within the backbone itself (backbone-backbone). These interactions include hydrogen bonding, dihydrogen bonding, hydrogen-hydrogen bonding, and several other weak closed-shell X-Y interactions (X, Y = O, N, C). While each individual interaction is very weak and typically accompanied by perhaps 0.5-3 kcal/mol, the sum total of these interactions is postulated to play a role in stabilizing the structure of nucleic acids. The Watson-and-Crick hydrogen bonding is also characterized in detail at the experimental geometries as a prelude to the discussion of the modes of interactions listed in the title.  相似文献   

18.
Quantum mechanical calculations at the B3LYP/6-31+G(d,p) level have been used to investigate the intrinsic conformational preferences of alpha,alpha-diphenylglycine, a simple alpha,alpha-dialkylated amino acid bearing two phenyl substituents on the alpha-carbon, in both the gas phase and aqueous solution. Nine minimum energy conformations have been characterized for the N-acetyl-N'-methylamide derivative within a relative energy range of about 9 kcal/mol. The relative stability of these structures is largely influenced by specific backbone...side chain and side chain...side chain interactions that can be attractive (N-H...pi and C-H...pi) or repulsive (C=O...pi). On the other hand, comparison with the minimum energy conformations calculated for alpha-aminoisobutyric acid, in which the two phenyl substituents are replaced by methyl groups, revealed that the bulky aromatic rings of alpha,alpha-diphenylglycine induce strain in the internal geometry of the peptide. Finally, a set of force-field parameters for classical Molecular Mechanics calculations was developed for the investigated amino acid. Molecular Dynamics simulations in aqueous solutions have been carried out to validate the parameters obtained.  相似文献   

19.
The bonding property of the CH/pi interaction in organic crystals has been investigated by the means of a periodic ab initio method. The energy of the CH(sp(2))/pi interaction in crystals, estimated with periodic RHF/6-21G*, showed a reasonable attractive CH(sp(2))/pi interaction owing to a cooperative effect, whereas the results calculated with RHF/cc-pVDZ indicate a negligibly small or repulsive interaction. The relative contribution of the CH(sp(2))/pi interaction to the column packing energy was found to be roughly half of the energy of a conventional hydrogen bond. The calculation of the charge distributions on the aromatic rings participating in the CH(sp(2))/pi interaction in crystals revealed that the atoms were more ionic than those in the gas phase. These theoretical calculations suggest a hydrogen-bonding characteristic for the CH(sp(2))/pi interaction in crystals, which does not occur in solution nor gas phase. We present computational evidence of the existence of the cooperative effect of CH(sp(2))/pi interaction in crystals.  相似文献   

20.
Recently, KOD and its related DNA polymerases have been used for preparing various modified nucleic acids, including not only base-modified nucleic acids, but also sugar-modified ones, such as bridged/locked nucleic acid (BNA/LNA) which would be promising candidates for nucleic acid drugs. However, thus far, reasons for the effectiveness of KOD DNA polymerase for such purposes have not been clearly elucidated. Therefore, using mutated KOD DNA polymerases, we studied here their catalytic properties upon enzymatic incorporation of nucleotide analogues with base/sugar modifications. Experimental data indicate that their characteristic kinetic properties enabled incorporation of various modified nucleotides. Among those KOD mutants, one achieved efficient successive incorporation of bridged nucleotides with a 2'-ONHCH?CH?-4' linkage. In this study, the characteristic kinetic properties of KOD DNA polymerase for modified nucleoside triphosphates were shown, and the effectiveness of genetic engineering in improvement of the enzyme for modified nucleotide polymerization has been demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号