首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the GW approximation, it has been shown that, owing to the electron-electron interaction, plasma satellites appear in the spectral function of a two-dimensional electron system on the surface of a topological insulator. They are due to the resonance plasmon-hole scattering. The contribution of satellites to the single-electron density of states is responsible for the downward energy shift of the minimum of the density, which is compared to the Dirac point in the experiment. To analyze the effect of vertex corrections on the resulting spectrum, a method has been proposed that goes beyond the GW approximation by summing ladder diagrams in the expansion of both the polarization function and self-energy. It has been shown with this method that the multiple electron-hole scattering hardly changes the resulting spectrum.  相似文献   

2.
We review experimental advances in the study of the electron transport in three-dimensional topological insulators with emphasis on experiments that attempted to identify the surface transport. Recent results on transport properties of topological insulator thin films will be discussed in the context of weak antilocalization and electron-electron interactions. Current status of gate-voltage control of the chemical potential in topological insulators will also be described.  相似文献   

3.
Topological insulators as a new type of quantum matter materials are characterized by a full insulating gap in the bulk and gapless edge/surface states protected by the time-reversal symmetry. We propose that the interference patterns caused by the elastic scattering of defects or impurities are dominated by the surface states at the extremal points on the constant energy contour. Within such a formalism, we summarize our recent theoretical investigations on the elastic scattering of topological surface states by various imperfections, including non-magnetic impurities, magnetic impurities, step edges, and various other defects, in comparison with the recent related experiments in typical topological materials such as BiSb alloys, Bi2Te3, and Bi2Se3 crystals.  相似文献   

4.
We study the effect of the Fermi surface anisotropy (hexagonal warping) on the superconducting pair potential, induced in a three-dimensional topological insulator (TI) by proximity with an s-wave superconductor (S) in presence of a magnetic moment of a nearby ferromagnetic insulator (FI). In the previous studies, similar problem was treated with a simplified Hamiltonian, describing an isotropic Dirac cone dispersion. This approximation is only valid near the Dirac point. However, in topological insulators, the chemical potential often lies well above this point, where the Dirac cone is strongly anisotropic and its constant energy contour has a snowflake shape. Taking into account this shape, we show that a very exotic pair potential is induced on the topological insulator surface. Based on the symmetry arguments we also discuss the possibility of a supercurrent flowing along the S/FI interface, when an S/FI hybrid structure is formed on the TI surface.  相似文献   

5.
Three-dimensional topological insulators are a new class of quantum matter which has interesting connections to nearly all main branches of condensed matter physics. In this article, we briefly review the advances in the field effect control of chemical potential in three-dimensional topological insulators. It is essential to the observation of many exotic quantum phenomena predicted to emerge from the topological insulators and their hybrid structures with other materials. We also describe various methods for probing the surface state transport. Some challenges in experimental study of electron transport in topological insulators will also be briefly discussed.  相似文献   

6.
By coating a three-dimensional topological insulator (TI) with a ferromagnetic filmsupporting an in-plane magnetic vortex, one breaks the time-reversal symmetry (TRS)without generating a mass gap. It rather yields electronic states bound to the vortexcenter which have different probabilities associated with each spin mode. In addition, itsassociate current (around the vortex center) is partially polarized with an energy gapseparating the most excited bound state from the scattered ones. Charged zero-modes alsoappear as fully polarized modes localized near the vortex center. From the magnetic pointof view, the observation of such a special current in a TI-magnet sandwich comes about asan alternative technique for detecting magnetic vortices in magnetic thin films.  相似文献   

7.
敬玉梅  黄少云  吴金雄  彭海琳  徐洪起 《物理学报》2018,67(4):47301-047301
利用聚焦离子束刻蚀技术在拓扑绝缘体Bi_2Se_3薄膜中刻蚀了纳米尺度的反点(antidot)阵列,并对制作的三个器件进行了系统的电学输运测量研究.低温下,所有器件中都观察到明显的弱反局域化效应.通过对弱反局域化效应的分析,发现器件一(Dev-1,不含有antidot阵列)和器件二(Dev-2,含有周期较大的antidot阵列)是始终由一个导电通道主导的量子输运系统,但在器件三(Dev-3,含有周期较小的antidot阵列)中能明确观察到较低温度下存在两个独立的导电通道,而在较高温度下Dev-3表现为由一个导电通道主导的量子输运系统.  相似文献   

8.
We study theoretically the RKKY interaction between magnetic impurities on the surface of three-dimensional topological insulators, mediated by the helical Dirac electrons. Exact analytical expression shows that the RKKY interaction consists of the Heisenberg-like, Ising-like, and Dzyaloshinskii-Moriya (DM)-like terms. It provides us a new way to control surface magnetism electrically. The gap opened by doped magnetic ions can lead to a short-range Bloembergen-Rowland interaction. The competition among the Heisenberg, Ising, and DM terms leads to rich spin configurations and an anomalous Hall effect on different lattices.  相似文献   

9.
Using the continual model of a semi-infinite three dimensional (3D) topological insulator (TI) we study the effect of the surface potential (SP) on the formation of helical topological states near the surface. The results reveal that spatial profile and spectrum of these states strongly depend on the SP type and strength. We pay special attention to the 3D TI substrate/non-magnetic insulating overlayer system to illustrate the principles of the topological near-surface states engineering.  相似文献   

10.
We study collective behavior of magnetic adatoms randomly distributed on the surface of a topological insulator. Interactions of an ensemble of adatoms are frustrated, as the RKKY-type interactions of two adatom spins depend on the directions of spins relative to the vector connecting them. We show that at low temperatures the frustrated RKKY interactions give rise to two phases: an ordered ferromagnetic phase with spins pointing perpendicular to the surface, and a disordered spin-glass-like phase. The two phases are separated by a quantum phase transition driven by the magnetic exchange anisotropy. The ordered phase breaks time-reversal symmetry spontaneously, driving the surface states into a gapped state, which exhibits an anomalous quantum Hall effect and provides a realization of the parity anomaly. We find that the magnetic ordering is suppressed by potential scattering.  相似文献   

11.
廖剑  史刚  刘楠  李永庆 《中国物理 B》2016,25(11):117201-117201
The recent discovery of three-dimensional(3D) topological insulators(TIs) has provided a fertile ground for obtaining further insights into electron localization in condensed matter systems.In the past few years,a tremendous amount of research effort has been devoted to investigate electron transport properties of 3D TIs and their low dimensional structures in a wide range of disorder strength,covering transport regimes from weak antilocalization to strong localization.The knowledge gained from these studies not only offers sensitive means to probe the surface states of 3D TIs but also forms a basis for exploring novel topological phases.In this article,we briefly review the main experimental progress in the study of the localization in 3D TIs,with a focus on the latest results on ultrathin TI films.Some new transport data will also be presented in order to complement those reported previously in the literature.  相似文献   

12.
Investigations of topological insulators, which are two- and three-dimensional systems with a gap in the bulk spectrum and topologically protected gapless edge states, are of considerable fundamental interest at present. The experiments confirming the presence of the edge states in two-dimensional systems with inverted bands and problems of determining the nature of such states in these experiments are reviewed. Special attention is focused on spin-sensitive experiments since the topological edge states have a nontrivial spin structure.  相似文献   

13.
Sun Y  Chen XQ  Yunoki S  Li D  Li Y 《Physical review letters》2010,105(21):216406
All known topological insulators are crystallographically related to either the noncentrosymmetric zinc-blende HgTe-type family or to the hexagonal centrosymmetric Bi2Se3 one. Through first-principles calculations, here we show evidence that under a proper uniaxial strain cubic ternary centrosymmetric antiperovskite compounds (M3N)Bi (M=Ca, Sr, and Ba) are three-dimensional topological insulators. This proposed family of materials is chemically inert and the lattice structure is well matched to important semiconductors, which provides a rich platform to easily integrate with electronic devices.  相似文献   

14.
The symmetry nature of the appearance of specific surface (edge) states at the boundaries of low-dimension structures with the symmetry of ribbons (borders) invariant with respect to time reversal is discussed. Symmetry reasons for the stability of such states against the elastic scattering from nonmagnetic impurities have been revealed.  相似文献   

15.
The unoccupied states in topological insulators Bi2Se3, PbSb2Te4, and Pb2Bi2Te2S3 are studied by the density functional theory methods. It is shown that a surface state with linear dispersion emerges in the inverted conduction band energy gap at the center of the surface Brillouin zone on the (0001) surface of these insulators. The alternative expression of ?2 invariant allowed us to show that a necessary condition for the existence of the second $\bar \Gamma $ Dirac cone is the presence of local gaps at the time reversal invariant momentum points of the bulk spectrum and change of parity in one of these points.  相似文献   

16.
We numerically study the quantum Hall effect (QHE) in three-dimensional topological insulator (3DTI) thin film in the presence of the finite Zeeman energy g and the hybridization gap Δ under a strong magnetic field and disorder. For Δ = 0 but g ≠ 0, the Hall conductivity remains to be odd-integer quanti-zed σ xy = ν(e 2/h) , where ν = 2? + 1 with ? being an integer. In the presence of disorder, the Hall plateaus can be destroyed through the float-up of extended levels toward the band center and the higher plateaus disappear first. The two central plateaus with ν = ± 1 around the band center are strongest against disorder scattering. With the increasing of the disorder strength, Hall plateaus are destroyed faster for the system with a weaker magnetic field. If g = 0 but Δ ≠ 0, there is a splitting of the central (n = 0) Landau level, yielding a new plateau with ν = 0, in addition to the original odd-integer plateaus. In the strong-disorder regime, the QHE plateaus can be destroyed due to the float-up of extended levels toward the band center. The ν = 0 plateau around the band center is strongest against disorder scattering, which eventually disappears. For both g ≠ 0 and Δ ≠ 0, the simultaneous presence of nonzero g and Δ causes the splitting of the degenerating Landau levels, so that all integer Hall plateaus ν = ? appear. The ν = 0,1 plateaus are the most stable ones. In the strong-disorder regime, all QHE states are destroyed by disorder, and the system transits into an insulating phase.  相似文献   

17.
An electron moving in a magnetically ordered background feels an effective magnetic field that can be both stronger and more rapidly varying than typical externally applied fields. One consequence is that insulating magnetic materials in three dimensions can have topologically nontrivial properties of the effective band structure. For the simplest case of two bands, these "Hopf insulators" are characterized by a topological invariant as in quantum Hall states and Z2 topological insulators, but instead of a Chern number or parity, the underlying invariant is the Hopf invariant that classifies maps from the three-sphere to the two-sphere. This Letter gives an efficient algorithm to compute whether a given magnetic band structure has nontrivial Hopf invariant, a double-exchange-like tight-binding model that realizes the nontrivial case, and a numerical study of the surface states of this model.  相似文献   

18.
We theoretically study the electronic structure of a three-dimensional topological insulator using a 3D lattice model with a warping term included. Thickness dependence of the electronic structure and the shape of constant-energy contour at different energy are both investigated in this model. We demonstrate that an energy gap opens in the surface state when the thickness is below six quintuple layers and disappears for thicker topological insulators. With the increasing of energy, the shape of constant-energy contour of the surface state band gradually evolves from a point at Dirac point to a circle with increasing volume, then to a hexagon, and finally to a hexagram. We clarify that the critical thickness of six quintuple is not modified by the warping term and the appearance of a hexagram is not influenced by the finite size effect. These phenomena agree well with recent angle-resolved photoemission spectroscopy experiments.  相似文献   

19.
Three-dimensional (3D) topological insulators represent a new state of quantum matter with a bulk gap and odd number of relativistic Dirac fermions on the surface. The unusual surface states of topological insulators rise from the nontrivial topology of their electronic structures as a result of strong spin-orbital coupling. In this review, we will briefly introduce the concept of topological insulators and the experimental method that can directly probe their unique electronic structure: angle resolved photoemission spectroscopy (ARPES). A few examples are then presented to demonstrate the unique band structures of different families of topological insulators and the unusual properties of the topological surface states. Finally, we will briefly discuss the future development of topological quantum materials.  相似文献   

20.
A honeycomb lattice model exhibiting the quantum spin-Hall effect is proposed, where the low-energy properties of the electrons are mainly determined by the energy spectrum in the vicinity of the Γ point, for suitable parameters. The nontrivial topology of the energy bands is revealed by calculating the Chern numbers, Berry curvature distribution, and edge state spectrum. We further show that in the continuum limit, the model Hamiltonian is equivalent to the effective model for the surface states in thin films of three-dimensional topological insulators. As a consequence, this lattice model provides a useful tool for numerical simulation of the physical properties of the surface states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号