首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 75 毫秒
1.
The effect of silica content on thermal oxidative stability of styrene–butadiene rubber (SBR)/silica composites has been studied. Morphologies of silica in SBR with different contents are investigated by scanning electron microscopy, which indicates that silica can well disperse in SBR matrix below the content of 40 %, otherwise aggregates or agglomerates will generate. Composites with around 40 % silica content show excellent mechanical properties and retention ratios after aging at 85 °C for 6 days. The values of activation energy (E a) of pure SBR and its composites are calculated by Kissinger and Flynn–Wall–Ozawa methods based on thermogravimetric (TG) results, which suggests that composite with about 20 % silica has minimum E a, and composite with 30–40 % silica has maximum E a. According to TG curves, it is found that silica can suppress the formation of char leading to decline in stability to some extent. On the other side, silica also has positive effect on improving thermal stability of the matrix as filler. Thus, the SBR/silica composites with silica content of 30–40 % can possess both excellent resistance to thermal oxidative degradation and superior mechanical properties.  相似文献   

2.
In this study, stearic acid/silica phase change composites were prepared by the sol-gel method using stearic acid as phase change materials (PCMs). The effects of mass fraction of stearic acid were comprehensively investigated. The structures and thermal properties of the obtained composites were characterized by various methods, including scanning electron microscopy (SEM), differential scanning calorimetry (DSC), leakage tests, and thermogravimetry analysis (TG). The results indicated that composite containing 76% stearic acid had the best thermal properties and low mass leakage, making 76% stearic acid as the maximum content that silica matrix could protect in the composites. The latter was further confirmed by morphological analyses of the silica matrix. Silica matrix exhibited spherical particle clusters, following big–small–big–small size pattern as stearic acid rose. The composite with 76% stearic acid was at the key point of change in particle size. These findings look promising for future to prepare silica-based phase change composites with good thermal properties easily.  相似文献   

3.
《Comptes Rendus Chimie》2015,18(5):581-585
Silica/A153–SO3H was prepared and characterized by FT–IR, TG and SEM. It proved to be an efficient and recyclable heterogeneous catalyst in the Baeyer–Villiger (BV) oxidation of cyclic ketones with H2O2 as an oxidant. Catalysts with different silica particle sizes were also made comparisons in terms of catalytic effect.  相似文献   

4.
In the present work, thermal degradation behaviors of the Zn (II), Cd(II), and Hg(II) coordination polymers of fumaroyl bis (paramethoxyphenylcarbamide) (fbpmpc) have been investigated by using thermogravimetric (TG) analysis, differential thermal analysis (DTA) and derivative thermogravimetry (DTG) analysis under non-isothermal conditions in nitrogen atmosphere at multiple heating rates. TG–DTA study noteworthy inferred the presence of lattice water in outer sphere of all the polymers. The decomposition was carried out in three-four well-separated stages where involved the loss of water molecules in the first step followed by organic ligand. Furthermore, the kinetics and thermodynamic stabilities of multi-steps thermal degradation were evaluated. The activation energy (Ea), order of reaction (n), Arrhenius factor (A), enthalpy change (ΔH), entropy change (ΔS) and free energy change (ΔG) of coordination polymers were obtained by using the Coats–Redfern (CR) method. Ultimately, based on initial, half and final decomposition temperature, and kinetics parameters values the orders of thermal stability were estimated.  相似文献   

5.
In the present study poly(propylene sebacate) (PPSeb) nanocomposites containing 2 wt% of fumed silica nanoparticles (SiO2) or multiwalled carbon nanotubes (MWCNTs), or montmorillonite (MMT) were prepared by in situ polymerization. The thermal degradation of nanocomposites was studied using thermogravimetric analysis (TGA). It was found that the addition of MWCNTs and MMT enhances the thermal stability of the polymer, while SiO2 nanoparticles do not affect it. From the variation of the activation energy (E) with increasing degree of conversion it was found that the decomposition of nanocomposites proceeded with a complex reaction mechanism with the participation of at least two different steps. To evaluate the thermal decomposition mechanisms and mainly the effect of nanoparticles on the thermal decomposition of PPSeb, TGA/FTIR and a combination of TG-gas chromatography–mass spectrometry (TG/GC–MS) were used. From mass ions detection of the formed decomposition compounds it was found that the decomposition of PPSeb and its nanocomposites, takes place mainly through β-hydrogen bond scission and, secondarily, through α-hydrogen bond scission. The main decomposition products were aldehydes, alcohols, allyl, diallyl, and carboxylic acids.  相似文献   

6.
Bispropargyl ether of bisphenol-A (BPEBPA), 4,4′-bismaleimido diphenyl ether (BMIE) and a blend consisting 60 mol% of BPEBPA and 40 mol% of BMIE are prepared. The materials are structurally characterized by FTIR. The curing characteristics of the monomers are measured by FTIR and DSC. The results indicated that BPEBPA-BMIE blend has low ΔHcure (J g−1) for the thermal polymerization and the whole temperature window for the exothermic curing reaction is shifted to lower temperature compared to BPEBPA. Borchardt and Daniels method is used to study the cure kinetics of the materials. The thermal curing of BMIE requires activation energy of 156.0 kJ mol−1 whereas BPEBPA needs slightly higher activation energy (177.2 kJ mol−1). From the TG studies, it can be concluded that the cured BPEBPA exhibits higher thermal stability than the cured BMIE due to the more complex network structure that are formed during thermal polymerization of BPEBPA. Dharwadkar and Kharkhanavala equation is employed to calculate the activation energy needed for the thermal degradation of the thermally cured materials. BPEBPA shows much higher activation energy (65.5 kJ mol−1) for thermal degradation indicating the higher thermal stability over the other two materials (BMIE: 42.5 kJ mol−1 and BPEBPA-BMIE blend: 46.9 kJ mol−1). The isothermal degradation of cured materials is effected in nitrogen atmosphere for constant time interval (10 min). The detailed analysis of the degradation products by GC-MS revealed the formation of phenols and several substituted phenols. This finding hints that the competitive C-C and C-O scissions of the chromene ring units formed via the Claisen rearrangement of the aryl propargyl ether system present in BPEBPA is operative.  相似文献   

7.
Understanding the response of drugs and their formulations to thermal stresses is an integral part of the development of stable medicinal products. In the present study, the thermal degradation of two drug samples (cetirizine and simvastatin) was determined by differential scanning calorimetery (DSC) and simultaneous thermogravimetery/differential thermal analysis (TG/DTA) techniques. The results of TG analysis revealed that the main thermal degradation for the cetirizine occurs during two temperature ranges of 165–227 and 247–402 °C. The TG/DTA analysis of simvastatin indicates that this drug melts (at about 143 °C) before it decomposes. The main thermal degradation for the simvastatin occurs during two endothermic behaviors in the temperature ranges of 238–308 and 308–414 °C. The influence of the heating rate (5, 10, 15, and 20 °C min?1) on the DSC behavior of both the drug samples was verified. The results showed that as the heating rate was increased, decomposition temperatures of the compounds were increased. Also, the kinetic parameters such as activation energy and frequency factor for the compounds were obtained from the DSC data by non-isothermal methods proposed by ASTM E696 and Ozawa. Based on the values of activation energy obtained by ASTM E696 method, the values of activation energy for cetirizine and simvastatin were 120.8 and 170.9 kJ mol?1, respectively. Finally, the values of ΔS #, ΔH #, and ΔG # of their decomposition reaction were calculated.  相似文献   

8.
Commercial polystyrene has been chemically modified with 4,4-dinitro valeryl chloride by use of Friedel–Crafts acylation reaction in the presence of anhydrous aluminum chloride in a mixture of 1,2-dichloroethane and nitrobenzene. The modified polystyrene containing –COCH2CH2C(NO2)2CH3 fragments in side phenyl rings, named gem-dinitro valerylated polystyrene (GDN-PS), was characterized by an Ubbelohde’s viscometer, FTIR, and 1H NMR spectroscopy. Simultaneous thermogravimetry–differential thermal analysis and differential scanning calorimetry (DSC) have been used to study thermal behavior of the polymer. The results of TG analysis revealed that the main thermal degradation for the GDN-PS occurs during two temperature ranges of 200–300 and 300–430 °C. The DTA curve of GDN-PS is showing a visible exothermic peak at 253.8 °C corresponding to the decomposition of gem-dinitro valeryl groups. The decomposition kinetic of the gem-dinitro groups for GDN-PS with degree of substitution (DS) 11 % was studied by non-isothermal DSC under various heating rates. Kinetic parameters such as activation energy and frequency factor for thermal decomposition of GDN-PS with DS 11 % were evaluated via the ASTM E698 and two isoconversional methods.  相似文献   

9.
The molecular dynamics of carboxylated acrylonitrile-butadiene rubber - silica hybrid materials was investigated. Silica hybrids were formed in situ rubber matrix using varied amounts of N-(2-aminoethyl)-3-aminopropyltrimethoxysilane (DAMS), serving also as a cross-linker. Filler-filler and filler-rubber interactions were present, due to the specific nature of these materials. It was found that the amounts of added aminosilane determined the cross-linking density of obtained materials and was the highest with 20 phr DAMS used. The cross-links had ionic nature. Dielectric relaxation spectroscopy (DRS) revealed β, α and α′ relaxation processes. The β relaxation, correlated with the mobility of polymer side groups, was influenced by the weak interaction between both acrylonitrile and carboxylic groups of the rubber and silanol groups of silica. The activation energy for that relaxation was similar for all materials (∼32 kJ mol−1). Both DRS and dynamical mechanical analysis (DMA) demonstrated that the amount of in situ formed silica filler did not significantly influence either the temperature of the α relaxation (correlated with glass transition) or its activation energy. Therefore, that relaxation was caused by free polymer chains, not attached to the silica particles. Similar values of glass transition temperature (Tg) for all hybrids were confirmed by DSC. It appeared that the amplitude of tangent delta (DMA) within Tg was dependent on silica amount. Detected at higher temperature α′ relaxation resulted from the presence of domains, where polymer chains were affected by silica network, geometrical restrictions and morphology of the silica-rich domains.  相似文献   

10.
A kraft lignin derivative (KLD) obtained by reaction with p-aminobenzoic acid/phthalic anhydride, was blended with poly(vinyl alcohol) (PVA) by solution casting from DMSO. PVA and PVA/KLD films were exposed to ultraviolet radiation (Hg lamp, 96 h) and analyzed by thermogravimetry (TG) in inert and oxidative atmosphere. Typical multi-step decomposition profiles were obtained. The apparent activation energy (Ea) of the thermal degradation of the samples was computed by the Vyazovkin method. The KLD degradation presented only small intervals of decomposition degree with constant Ea values. PVA and blends showed intervals of up to 50% in decomposition degree with nearly constant Ea, and smaller intervals in which Ea varies drastically. The influences of samples irradiation and of surrounding gas in TG analysis on Ea are also shown.  相似文献   

11.
The fast neutron activation technique was applied to bulk samples (≈11 kg) of Australian black coal. The determination of alumina is based on the reaction 27Al(n,p)-27Mg by counting the 0.844-MeV peak (t12 = 9.4 min). Silica is determined by means of the reaction 28Si(n,p)28Al; the 1.78-MeV peak (t12 = 2.3 min) is counted and a correction for the interference from alumina is applied. The ash content is based on the correlation between ash and the sum of alumina and silica. The accuracies (1 SD) for the determination of alumina, silica and ash were 0.52% Al2O3, 0.79% SiO2 and 1.02% ash, respectively. The ash, alumina and silica contents of the samples were in the ranges 8.8–37.5%, 1.3–10.3% and 6.4–22%, respectively.  相似文献   

12.
Thermal properties of the organic–inorganic bicontinuous nanocomposites prepared via in situ two-stage polymerization of various silanes, epoxy, and amine monomers are investigated, and the impact of filler content and its organic compatibility on thermal stability of these nanocomposites is studied. Two series of epoxy–silica nanocomposites, namely, EpSi-A and EpSi-B containing 0–20 wt% silica, are synthesized. An epoxy–silane coupling agent is employed to improve the organic compatibility of silica in EpSiB nanocomposites. The composites synthesized via two-stage polymerization are characterized by Fourier transform infrared spectroscopy, differential scanning calorimetry (DSC), and thermogravimetric (TG) analysis. DSC and TG/differential thermogravimetric results reveal substantially high glass transition (T g) and excellent thermal stability of the bicontinuous nanocomposites as compared with pristine epoxy polymer. Both T g and thermal properties, however, considerably vary depending on the organic compatibility of the nanocomposites. Significantly higher decomposition temperatures are recorded in case of EpSi-B nanocomposites owing to the chemical links between the epoxy and silica phases. Kinetic studies also show relatively higher activation energies of pyrolysis for EpSi-B nanocomposites.  相似文献   

13.
The effects of various burning rate catalysts on thermal decomposition of cured glycidyl azide polymer (GAP)-ammonium perchlorate (AP) propellants have been studied by means of thermal analysis and a modified vacuum stability test (MVST). Four types of iron-containing catalysts examined in this paper are catocene, ferrocenecarboxaldehyde (FCA), ferrocene, and ferric oxide. Results of differential thermal analysis (DTA) and thermogravimetric analysis (TG) revealed that the catalysts play an important role in the decomposition of both AP and GAP. The peak decomposition temperature (T m) of DTA curves and onset decomposition temperature (T o) of TG patterns considerably shifted to a lower temperature as the concentration of catalysts increased in the propellants. The endothermic temperature of AP, however, is unaffected by the presence of burning rate catalysts in all cases. The activation energy of decomposition of the propellants in range of 80 to 120°C is determined, based on the MVST results.  相似文献   

14.
Two novel algorithms are presented for processing thermogravimetric (TG) data obtained during the degradation of a polymer in a single step mechanism under non-isothermal conditions. The first algorithm assesses three characteristics computed from the TG profile against a theoretical data set, and identifies likely kinetic models to fit the experimental data. The second algorithm provides an iterative arithmetic method to extract the apparent activation energy, Ea, and Arrhenius A-factor, A, from TG data without simplifying assumptions. The algorithms are validated using model data and applied to data for the non-isothermal degradation of poly(ethylene adipate), poly(lactic acid) (PLA) and a food packaging PLA composite formulation containing kenaf, a natural fibre. The analysis of poly(ethylene adipate) produced Ea = 137 kJ mol−1 and log10A = 8.71 (first-order kinetic model). The kenaf fibre destabilizes PLA, lowering its Ea from 190 kJ mol−1 to 150 kJ mol−1 (contracting volume model).  相似文献   

15.
Two thermoset systems based on maleimides and diglycidyl ether of bisphenol A (DGEBA) cured with p-aminobenzoic acid were characterized in terms of thermal and electrical behavior. Thermal characterization has been undertaken by means of thermogravimetric analysis in nitrogen atmosphere up to 600°C using simultaneous thermogravimetric/Fourier transform infrared/mass spectrometry (TG/FT-IR/MS) analysis. In the first stage of thermal degradation, the global kinetic parameters [activation energy (Ea) and preexponential factor (log A1 (s−1))] were calculated using the isoconversional method of Friedman. The energies variation as well as the shape of the differential thermal analysis curves suggests that the thermal decomposition process occurred in multiple stages. The evolved gases analysis was conducted by simultaneous TG/FT-IR/MS coupled techniques. Dielectric relaxation spectroscopy characterization was also made.  相似文献   

16.
In the present study, the degradation process of piperazine (PP) immobilized silica gel (SiPP) is investigated under dynamic conditions. The degradation of SiPP is studied with thermogravimetric analyzer (TGA). The kinetics of degradation process is analyzed by Kissinger method, Flynn–Wall–Ozawa's (FWO) method, and Deconvolution method. It is found that degradation of SiPP can be described by parallel independent two-portion process model, which includes two processing state of the system (marked by processes 1 and 2), where process 1 and 2 can be attributed to decomposition processes of organic moiety attached on silica surface. The apparent activation energy (Ea) is calculated by Flynn–Wall–Ozawa's (FWO) method and deconvolution method.  相似文献   

17.
Molecular motion and thermal stability in two series of nanophase‐separated polyimide–silica (PI–SiO2) hybrid materials with chemically bound components were studied. The hybrids were synthesized from p‐aminophenyltrimethoxysilane‐terminated poly(amic acid)s as PI precursors and tetramethoxysilane as a silica precursor via a sol–gel process. The hybrids differed in their PI chemical structure and chain length (number‐average molecular weight = 5.000, 7.500, or 10.000) and in their SiO2 content, which ranged from 0 to 50 wt %. Differential scanning calorimetry, laser‐interferometric creep rate spectroscopy, and thermally stimulated depolarization current techniques were used for studying the dynamics from 100 to 650 K and from 10?3 to 10?2 Hz. Comparative thermogravimetric measurements were also carried out from 300 to 900 K. Silica nano‐ or submicrodomains that formed affected PI dynamics in two opposite directions. Because of the loosening of the molecular packing of PI chains confined to nanometer‐scale spaces between silica constraints, an enhancement of small‐scale motion, mostly at temperatures below the β‐relaxation region, occurred. However, a partial or total suppression of segmental motion could be observed above the β‐relaxation temperature, drastically so for the shortest PI chains at elevated silica contents and within or close to the glass‐transition range, because of the covalent anchoring of chain ends to silica domains. Large changes in thermal stability, including a 2.5‐fold increase in the apparent activation energy of degradation, were observed in the hybrids studied. A greater than 100 °C rise in long‐term thermal stability could be predicted for some hybrids with respect to pure PI. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1056–1069, 2002  相似文献   

18.
We report a method to synthesize low-density transparent mesoporous silica aerogel beads by ambient pressure drying (APD). The beads were prepared by acid–base sol–gel polymerization of sodium silicate in aqueous ammonia solution via the ball dropping method (BDM). To minimize shrinkage during drying, wet silica beads were initially prepared; their surfaces were then modified using trimethylchlorosilane (TMCS) via simultaneous solvent exchange and surface modification. The effects of the volume percentage (%V) of TMCS on the physical and textural properties of the beads were investigated. The specific surface area and cumulative pore volume of the silica aerogel beads increased with an increase in the %V of TMCS. Silica aerogel beads with low packing bed density (0.081 g/cm3), high surface area (917 m2/g), and large cumulative pore volume (2.8 cm3/g) was obtained when 10%V TMCS was used. Properties of the final product were examined by FE-SEM, TEM, BET, and TG–DT analyses. Surface chemical modifications were confirmed by FTIR spectroscopy. The hydrophobic silica aerogel beads were thermally stable up to 411 °C. We discuss our results and compare our findings for modified versus unmodified silica beads.  相似文献   

19.
The nano poly(phenylsilsesquioxane) spheres (nano-PPSQ) were prepared by the sol?Cgel method and incorporated into poly(methyl methacrylate) (PMMA) by in situ bulk polymerization of methyl methacrylate. The structure of nano-PPSQ was confirmed by transmission electron microscope and thermogravimetry analysis (TG). The interaction between nano-PPSQ and PMMA was investigated by Fourier transform infrared spectra (FT-IR). The influence of nano-PPSQ on the thermal stability of PMMA was investigated by TG and differential scanning calorimetry (DSC) measurements. The results indicated that nano-PPSQ enhanced the thermal stability and the temperatures of glass transition (T g) of nanocomposites. The effect of the heating rate in dynamic measurements (5?C30?°C?min?1) on kinetic parameters such as activation energy by TG both in nitrogen and air was investigated. The Kissinger method was used to determine the apparent activation energy for the degradation of pure PMMA and nanocomposites. The kinetic results showed that the apparent activation energy for degradation of nanocomposites was higher than that of pure PMMA under air.  相似文献   

20.
Various hydrothermal curing regimes were used to investigate the hydration and physical characteristics of two kinds of inorganic binder composites: high alumina cement–silica fume–Portland cement and high alumina cement–silica fume–sodium polyphosphate. Simultaneous thermal analysis (DTA and TG) was used to identify temperature ranges of thermal decomposition of cured samples and to characterize the nature of hydrate products. Two kinds of products are formed. The first ones consist of C3AH6, AH3, calcium carbonate (C–C) as a product of carbonation, and C3AH1.5 resulted from the partial decomposition of C3AH6 under higher hydrothermal pressure. The second ones are the products formed by acid–base reaction between monocalcium aluminate and sodium polyphosphate to form NaCaPO4·xH2O and Al2O3·xH2O that could convert to chemically bonded ceramic binders like hydroxyapatite (Ca5(PO4)3OH) and gibbsite (Al(OH)3). These two hydroceramic products formed under these conditions act also as binder and could be useful as cement binders for the protection of petroleum, gas, or geothermal wells. Mercury intrusion porosimeter was used for the estimation of the pore structure parameters of the composites. It turned up that longer curing time coupled with higher hydrothermal pressure has improved the pore structure of the first composite, while that of the second has remained unchanged.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号