首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 106 毫秒
1.
The thermal decomposition of un-irradiated and gamma-irradiated potassium bromate (KBrO3) was performed under non-isothermal conditions at different heating rates (5, 10, 15 and 20 K min?1). The data was analysed using isoconversional and non-isoconversional methods. The kinetic parameters of thermal decomposition process were obtained by three model-free isoconversional methods: Flynn–Wall–Ozawa, Kissinger–Akahira–Sunose and Friedman. Irradiation enhances the decomposition and the effect increases with the irradiation dose. The activation energy decreases on irradiation. Kinetic analysis of data in view of various solid-state reaction models showed that the decomposition of un-irradiated and irradiated anhydrous KBrO3 is best described by the Avrami–Erofeev model equation, [?ln(l?α)]1/2 = kt.  相似文献   

2.
This study is devoted to the thermal decomposition of ZnC2O4·2H2O, which was synthesized by solid-state reaction using C2H2O4·2H2O and Zn(CH3COO)2·2H2O as raw materials. The initial samples and the final solid thermal decomposition products were characterized by Fourier transform infrared and X-ray diffraction. The particle size of the products was observed by transmission electron microscopy. The thermal decomposition behavior was investigated by thermogravimetry, derivative thermogravimetric and differential thermal analysis. Experimental results show that the thermal decomposition reaction includes two stages: dehydration and decomposition, with nanostructured ZnO as the final solid product. The Ozawa integral method along with Coats–Redfern integral method was used to determine the kinetic model and kinetic parameters of the second thermal decomposition stage of ZnC2O4·2H2O. After calculation and comparison, the decomposition conforms to the nucleation and growth model and the physical interpretation is summarized. The activation energy and the kinetic mechanism function are determined to be 119.7 kJ mol?1 and G(α) = ?ln(1 – α)1/2, respectively.  相似文献   

3.
It has been shown the ability of the Sample Controlled Reaction Temperature (SCRT) method for both discriminate the kinetic law and calculate the activation energy of the reaction. This thermal decomposition is best described by a Johnson–Mehl–Avrami kinetic model (with n = 2) with an activation energy of nuclei growth which fall in the range 52–59 kJ mol?1. The process is not a single-step because the initial rate of decomposition is likely to be limited by nucleation. The results reported here constitute the first attempt to use the new SCRT method to study the kinetic of the thermal decomposition of cobalt nitrate.  相似文献   

4.
The thermal decomposition of potassium iodate (KIO3) has been studied by both non-isothermal and isothermal thermogravimetry (TG). The non-isothermal simultaneous TG–differential thermal analysis (DTA) of the thermal decomposition of KIO3 was carried out in nitrogen atmosphere at different heating rates. The isothermal decomposition of KIO3 was studied using TG at different temperatures in the range 790–805 K in nitrogen atmosphere. The theoretical and experimental mass loss data are in good agreement for the thermal decomposition of KIO3. The non-isothermal decomposition of KIO3 was subjected to kinetic analyses by model-free approach, which is based on the isoconversional principle. The isothermal decomposition of KIO3 was subjected to both conventional (model fitting) and model-free (isoconversional) methods. It has been observed that the activation energy values obtained from all these methods agree well. Isothermal model fitting analysis shows that the thermal decomposition kinetics of KIO3 can be best described by the contracting cube equation.  相似文献   

5.
A novel complex [Ni(H2O)4(TO)2](NO3)2·2H2O (TO = 1,2,4-triazole-5-one) was synthesized and structurally characterized by X-ray crystal diffraction analysis. The decomposition reaction kinetic of the complex was studied using TG-DTG. A multiple heating rate method was utilized to determine the apparent activation energy (E a) and pre-exponential constant (A) of the former two decomposition stages, and the values are 109.2 kJ mol?1, 1013.80 s?1; 108.0 kJ mol?1, 1023.23 s?1, respectively. The critical temperature of thermal explosion, the entropy of activation (ΔS ), enthalpy of activation (ΔH ) and the free energy of activation (ΔG ) of the initial two decomposition stages of the complex were also calculated. The standard enthalpy of formation of the new complex was determined as being ?1464.55 ± 1.70 kJ mol?1 by a rotating-bomb calorimeter.  相似文献   

6.
Thermal decomposition measurements for lithium borohydride (LiBH4) are performed at non-isothermal and non-equilibrium conditions by means of differential thermal analysis (DTA). A simplified alternative procedure is introduced for evaluating thermodynamic and kinetic parameters simultaneously using a single set of measurements. Rate constant (k) and enthalpy (ΔH = ?102.1 ± 0.7 kJ mol?1 LiBH4) are archived. Temperature dependence for activation energy (E a) is found taking advantage of Guggenheim–Arrhenius method; the mean activation energy is $ \overline{E}_{a} $  93.9 ± 0.9 kJ mol?1 LiBH4 in the range of heating rate β 1–50 K min?1.  相似文献   

7.
The present research work focuses on understanding the kinetics and mechanism of co-pyrolysis of cellulose, a major constituent of biomass, and polypropylene (PP) that is abundantly present in waste plastics. Co-pyrolysis of cellulose and PP of different compositions, viz., 100:0, 80:20, 60:40, 40:60, 20:80, and 0:100 (mass%/mass%), was carried out in a thermogravimetric analyzer at various heating rates from 5 to 180 K min?1. The kinetics of slow to medium heating rate pyrolysis was analyzed using first Kissinger and Kissinger–Akahira–Sunose techniques. Cellulose and PP decomposition occurred in two distinct temperature regimes, viz., 575–650 and 675–775 K, respectively. However, apparent activation energies of thermal decomposition of the mixtures clearly indicated the presence of interaction between cellulose and PP. The presence of cellulose in the mixture decreased the apparent activation energy of PP decomposition from 210 to 120 kJ mol?1, while the presence of PP did not affect the apparent activation energy of cellulose decomposition (E a = 158 ± 3 kJ mol?1). A significant decrease in apparent activation energy was observed in the conversion regime corresponding to the completion of cellulose pyrolysis and beginning of PP pyrolysis. Differential scanning calorimetry data clearly showed the shift of exothermic char formation to higher temperatures with PP incorporation in the mixture. The presence of PP also resulted in reduction of final char content. Based on the above analyses, a new interaction step that involves a bimolecular reaction of activated PP with volatiles from cellulose pyrolysis to form interaction products and char is proposed, and the rate limiting steps for char formation are clearly identified.  相似文献   

8.
The rate and kinetics of the thermal decomposition of potassium iodate (KIO3) has been studied as a function of particle size, in the range 63?C150???m, by isothermal thermogravimetry at different temperatures, 790, 795, 800 and 805?K in nitrogen atmosphere. The theoretical and experimental mass loss data are in good agreement for the thermal decomposition of all samples of KIO3 at all temperatures studied. The isothermal decomposition of all samples of KIO3 was subjected to both model-fitting and model-free (isoconversional) kinetic methods of analysis. It has been observed that the activation energy values are independent of the particle size. Isothermal model-fitting analysis shows that the thermal decomposition kinetics of all the samples of KIO3 studied can be best described by the contracting cube equation.  相似文献   

9.
In the present work, kinetics of thermal decomposition of 2,2-dinitropropyl acrylate–styrene copolymer (DNPA/St) and 2,2-dinitropropyl acrylate–vinyl acetate copolymer (DNPA/VAc) was investigated by differential scanning calorimetry (DSC). The influence of the heating rate (5, 10, 15, and 20 °C min?1) on the DSC behavior of the copolymer was verified. The results showed that, as the heating rate was increased, decomposition temperature of the copolymer was increased. Also, the kinetic parameters such as activation energy and frequency factor of the copolymer were obtained from the DSC data by the isoconversional methods proposed by Kissinger–Akahira–Sunose (KAS) and Flynn–Wall–Ozawa (FWO). Average activation energy obtained by KAS and FWO methods for the thermal decomposition reaction of DNPA/St and DNPA/VAc are 157.38 ± 0.27 and 147.67 ± 0.57 kJ mol?1, respectively. The rate constants for thermal decomposition calculated from the activation parameters showed the structural dependency. The relative stability of two copolymers under 50 °C was in this order: DNPA/St > DNPA/VAc. The results of thermogravimetry (TG) analysis revealed that the main mass changes for DNPA/St and DNPA/VAc occurred in the temperature ranges of 200–270 °C. The DSC-FTIR analysis of DNPA/St indicates that the band intensity of nitro and other groups increased haphazardly from 230 °C due to thermal decomposition.  相似文献   

10.
Kinetics of two successive thermal decomposition reaction steps of cationic ion exchange resins and oxidation of the first thermal decomposition residue were investigated using a non-isothermal thermogravimetric analysis. Reaction mechanisms and kinetic parameters for three different reaction steps, which were identified from a FTIR gas analysis, were established from an analysis of TG analysis data using an isoconversional method and a master-plot method. Primary thermal dissociation of SO3H+ from divinylbenzene copolymer was well described by an Avrami–Erofeev type reaction (n = 2, g(α) = [?ln(1 ? α)]1/2]), and its activation energy was determined to be 46.8 ± 2.8 kJ mol?1. Thermal decomposition of remaining polymeric materials at temperatures above 400 °C was described by one-dimensional diffusion (g(α) = α 2), and its activation energy was determined to be 49.1 ± 3.1 kJ mol?1. The oxidation of remaining polymeric materials after thermal dissociation of SO3H+ was described by a phase boundary reaction (contracting volume, g(α) = 1?(1 ? α)1/3). The activation energy and the order of oxygen power dependency were determined to be 101.3 ± 13.4 and 1.05 ± 0.17 kJ mol?1, respectively.  相似文献   

11.
In this research, ultrasound irradiation as a simple method was used to produce boron nanostructures. Reaction conditions such as boron concentration and sonication time show important roles in the size, morphology and growth process of the final products. The boron nanostructures (nanoparticles and nanorods) were characterized by scanning electron microscopy, transmission electron microscopy, X-ray powder diffraction, small-angle X-ray scattering and inductively coupled plasma atomic emission spectroscopy techniques. Primary evaluation of results showed that nanoparticles and nanorods of boron successfully have been prepared with 25–40 and 50–100 nm average particle size, respectively. These nanostructures (nanoparticles and nanorods) were studied as an additive for promoting the thermal decomposition of ammonium perchlorate (AP) particles. Thermochemical decomposition behaviors of treated samples were characterized by thermal gravimetric analysis and differential scanning calorimetry techniques. Also, the kinetic parameters of thermal decomposition processes of pure and treated samples were obtained by nonisothermal methods proposed by Kissinger and Ozawa. However, boron nanoparticles with the smallest average particle size (25–40 nm) have the most significant catalytic effect including the decrease in decomposition temperature of AP + B nanocomposite by 100 °C, increase in the heat of decomposition from 580 to 1354 J g?1 and decrease in activation energy from 207 to 110 kJ mol?1.  相似文献   

12.
The copper(II) oxalate was synthesized, characterized using FT-IR and scanning electron microscopy and its non-isothermal decomposition was studied by differential scanning calorimetric at different heating rates. The kinetics of the thermal decomposition was investigated using different isoconversional and maximum rate (peak) methods viz. Kissinger–Akahira–Sunose (KAS), Tang, Starink1.95, Starink1.92, Flynn–Wall–Ozawa (FWO) and Bosewell. The activation energy values obtained from isoconversional methods of FWO and Bosewell are 0.9 and 3.0 %, respectively, higher than that obtained from other methods. The variation of activation energy, E α with conversion function, α, established using these different methods were found to be similar. Compared to the FWO method, the KAS method offers a significant improvement in the accuracy of the E a values. All but the Bosewell maximum rate (peak) methods yielded consistent values of E α (~137 kJ mol?1); however, the complexity of the thermal decomposition reaction can be identified only through isoconversional methods.  相似文献   

13.
Understanding the response of drugs and their formulations to thermal stresses is an integral part of the development of stable medicinal products. In the present study, the thermal degradation of two drug samples (cetirizine and simvastatin) was determined by differential scanning calorimetery (DSC) and simultaneous thermogravimetery/differential thermal analysis (TG/DTA) techniques. The results of TG analysis revealed that the main thermal degradation for the cetirizine occurs during two temperature ranges of 165–227 and 247–402 °C. The TG/DTA analysis of simvastatin indicates that this drug melts (at about 143 °C) before it decomposes. The main thermal degradation for the simvastatin occurs during two endothermic behaviors in the temperature ranges of 238–308 and 308–414 °C. The influence of the heating rate (5, 10, 15, and 20 °C min?1) on the DSC behavior of both the drug samples was verified. The results showed that as the heating rate was increased, decomposition temperatures of the compounds were increased. Also, the kinetic parameters such as activation energy and frequency factor for the compounds were obtained from the DSC data by non-isothermal methods proposed by ASTM E696 and Ozawa. Based on the values of activation energy obtained by ASTM E696 method, the values of activation energy for cetirizine and simvastatin were 120.8 and 170.9 kJ mol?1, respectively. Finally, the values of ΔS #, ΔH #, and ΔG # of their decomposition reaction were calculated.  相似文献   

14.
The thermal decomposition of -irradiated KClO3 was studied by dynamic thermogravimetry. The reaction order, activation energy, frequency factor and entropy of activation were computed using the Coats-Redfern, Freeman-Carroll and Horowitz-Metzger methods and were compared with those of the unirradiated salt. The decomposition increases with the irradiation dose. The energy of activation decreases on irradiation. The mechanism for the decomposition of unirradiated and irradiated KClO3 follows the Avrami model equation, 1-(1-)1/3, and the rate controlling process is a phase boundary reaction assuming spherical symmetry.  相似文献   

15.
A detailed thermal analysis of iron and cobalt surfactant complexes of the type [M(CH3COO)4]2?[C12H25NH3 +]2 has been carried out using Thermogravimetric (TG) analysis at different heating rates (i.e., 5, 10, 15, and 20 °C min?1). It has been observed that iron complex decomposes by a different mechanism compared to other transition metal complexes. Metal is the final product instead of metal oxide. Combining the results from our previous study, first row transition metal complexes exhibit an order of stability in agreement with the famous Irving Williams series, i.e., the apparent activation energy, E for thermal decomposition varies as: E Fe > E Co < E Ni < E Cu > E Zn (exception being iron because of different decomposition mechanism). Thermal decomposition parameters have been measured and compared using the multiple heating rate method of Flynn–Wall–Ozawa. Further, molecular modeling calculations have been carried out to compare the experimental TG data with theoretical computations for the synthesized metal surfactant complexes. Minimum energy optimized structures for the complexes have been obtained using Gaussian software.  相似文献   

16.
The melting temperature, melting enthalpy, and specific heat capacities (C p) of 5′-deoxy-5′-iodo-2′,3′-O-isopropylidene-5-fluorouridine (DIOIPF) were measured using DSC-60 Differential Scanning Calorimetry. The melting temperature and melting enthalpy were obtained to be 453.80 K and 33.22 J g?1, respectively. The relationship between the specific heat capacity and temperature was obtained to be C p/J g?1 K?1 = 2.0261 – 0.0096T + 2 × 10?5 T 2 at the temperature range from 320.15 to 430.15 K. The thermal decomposition process was studied by the TG–DTA analyzer. The results showed that the thermal decomposition temperature of DIOIPF was above 487.84 K, and the decomposition process can be divided into three stages: the first stage is the decomposition of impurities, the mass loss in the second stage may be the sublimation of iodine and thermal decomposition process of the side-group C4H2O2N2F, and the third stage may be the thermal decomposition process of both the groups –CH3 and –CH2OCH2–. The obtained thermodynamic basic data are helpful for exploiting new synthetic method, engineering design, and commercial process of DIOIPF.  相似文献   

17.
The unimolecular decomposition reaction of CF3CCl2O radical has been investigated using theoretical methods. Two most important channels of decomposition occurring via C–C bond scission and Cl elimination have been considered during the present investigation. Ab initio quantum mechanical calculations are performed to get optimized structure and vibrational frequencies at DFT and MP2 levels of theory. Energetics are further refined by the application of a modified Gaussian-2 method, G2M(CC,MP2). The thermal rate constants for the decomposition reactions involved are evaluated using Canonical Transition State Theory (CTST) utilizing the ab initio data. Rate constants for C–C bond scission and Cl elimination are found to be 6.7 × 106 and 1.1 × 108 s?1, respectively, at 298 K and 1 atm pressure with an energy barrier of 8.6 and 6.5 kcal/mol, respectively. These values suggest that Cl elimination is the dominant process during the decomposition of the CF3CCl2O radical. Transition states are searched on the potential energy surface of the decomposition reactions involved and are characterized by the existence of only one imaginary frequency (NIMAG = 1) during frequency calculation. The existence of transition states on the corresponding potential energy surface is further ascertained by performing intrinsic reaction coordinate (IRC) calculation.  相似文献   

18.
The gamma degradation of toxic non-oxidizing biocide dodecyl dimethyl benzyl ammonium chloride (DDBAC) was investigated. The degradation of DDBAC achieved 70–100% depending on the initial concentration and the absorbed dose, but only 10–33% dissolved organic carbon was removed. The presence of NO3 ?, HCO3 ?, 2-propanol and tert-butanol inhibited the degradation of DDBAC. The DDBAC degradation rate constant ratios of ·OH, ·H and e aq ? was calculated as 7.4:1.4:1. The acute toxicity of 10 mg L?1 DDBAC was removed by 60% at absorbed doses of 0.5–3.0 kGy. The results showed that gamma irradiation was effective to remove DDBAC and its toxicity.  相似文献   

19.
A new cadmium complex of 1,1-diamino-2,2-dinitroethylene (FOX-7) was synthesized and structurally determined. Central Cd2+ is coordinated by six nitrogens from four NH3 molecules and two FOX-7? anions to form an octahedral structure. The thermal decomposition of Cd(NH3)4(FOX-7)2 was studied with differential scanning calorimeter and TG–DTG methods. The apparent activation energy and pre-exponential constant of the exothermic process are 220.6 kJ M?1 and 1017.86 s?1, respectively. Cd(NH3)4(FOX-7)2 is sensitive.  相似文献   

20.
Polypropylene‐low density polyethylene (PP‐LDPE) blends involving PP‐LDPE (90/10 wt%.) with (0.06 wt%) dialkyl peroxide (DAP) and different amounts (5, 10, 20 wt%) of calcium carbonate (CaCO3) were prepared by melt‐blending with a single‐screw extruder. The effect of addition of CaCO3 on thermal decomposition process and kinetic parameters, such as activation energy and pre‐exponential factor of PP‐LDPE blend with DAP matrix, was studied. The kinetics of the thermal degradation of composites was investigated by thermogravimetric analysis in dynamic nitrogen atmosphere at different heating rates. TG curves showed that the thermal decomposition of composites occurred in one weight‐loss stage. The apparent activation energies of thermal decomposition for composites, as determined by the Tang method (TM), the Kissinger–Akahira–Sunose method (KAS), the Flynn–Wall–Ozawa method (FWO), and the Coats–Redfern (CR) method were 156.6, 156.0, 159.8, and 167.7 kJ.mol?1 for the thermal decomposition of composite with 5 wt% CaCO3, 191.5, 190.8, 193.1, and 196.8 kJ.mol?1 for the thermal decomposition of composite with 10 wt% CaCO3, and 206.3, 206.1, 207.5, and 203.8 kJ mol?1 for the thermal decomposition of composite with 20 wt% CaCO3, respectively. The most likely decomposition process for weight‐loss stages of composites with CaCO3 content 5 and 10 wt% was an An sigmoidal type. However, the most likely decomposition process for composite with CaCO3 content 20 wt% was an Rn contracted geometry shape type in terms of the CR and master plots results. It was also found that the thermal stability, activation energy, and thermal decomposition process were changed with the increase in the CaCO3 filler weight in composite structure. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号