共查询到20条相似文献,搜索用时 15 毫秒
1.
Studies of the decomposition rate of the reducing agent sodium tetrahydroborate in alkaline and acidic media and of the reaction rate of the formation of the hydrides under the usual analytical conditions are described. The stripping of the hydrides with different lengths of the stripping coil, with different amounts of hydrogen in the carrier gas and with sodium hydroxide added during and after the stripping process are discussed. Some evidence for the existence of an intermediate during the decomposition reaction of the sodium tetrahydroborate is given. The role of temperature, hydrogen and oxygen during the atomization of the hydrides in an electrically heated quartz cuvette is discussed. Under certain conditions, antimony atoms form dimers or elemental antimony precipitates in the heated cuvette. 相似文献
2.
Nur Erdem 《Analytica chimica acta》2004,505(1):59-65
The interferences between arsenic and antimony on each other during the hydride generation atomic absorption spectrometry (HGAAS) determination of arsenic and antimony using a quartz tube atomizer (QTA) were examined. In order to eliminate or reduce such interferences by selective heat decomposition of arsine and stibine, a Pyrex adsorption U-tube trap containing glass wool was placed between the drying tube and the quartz tube atomizer. Although at 250 °C stibine decomposes and is held almost completely by the trap, arsine is also decomposed to an extent of 24% and, therefore, thermal decomposition is not useful to eliminate antimony interference on arsenic determination. The effect of coating the glass wool in the U-tube with antimony on the arsenic suppression of the antimony signal was studied. The results showed that the antimony coating in the U-tube could not hold arsenic effectively and its interference on the antimony signal could not be eliminated by this means. In the second part of the study, oxygen was supplied to the quartz tube atomizer during atomization in order to study the effect of supplying oxygen on the antimony signal and on the interference of arsenic in the antimony determination. Sensitivity was increased in the presence of oxygen and interferences of arsenic on antimony determination was decreased by about 10% when oxygen was supplied. It was also observed that the extent of interferences depended mainly on the interferent concentration rather than the analyte concentration. 相似文献
3.
Han-wen Sun Feng-xia Qiao Ran Suo Li-xin Li Shu-xuan Liang 《Analytica chimica acta》2004,505(2):255-261
A new method was developed for simultaneous determination of trace arsenic and antimony in Chinese herbal medicines by hydride generation-double channel atomic fluorescence spectrometry with a Soxhlet extraction system and an n-octanol-water extraction system, respectively. The effects of analytical conditions on the fluorescence intensity were investigated and optimized. A water-dissolving and methanol-water-dissolving capability were compared. The contents of different species in five Chinese herbal medicines and their decoctions were analyzed. The concentration ratios of n-octanol-soluble As or Sb to water-soluble As or Sb were related to the kinds of medicine and the acidity of the decoction. Soxhlet extraction was found to be an effective method for plants pretreatment for determination of arsenic and antimony species in Chinese herbs; the interferences of coexisting ions were evaluated. The proposed method has the advantages of simple operation, high sensitivity and high speed, with 3σ detection limits of 0.094 μg g−1 for As(III), 0.056 μg g−1 for total As, 0.063 μg g−1 for Sb(III) and 0.019 μg g−1 for total Sb in a 1.0 g of the sample. 相似文献
4.
Hydride generation inductively coupled plasma optical emission spectrometry (HG-ICP-OES) was used in the determination of As and Sb concentrations in fly ash samples. The effect of sample pre-treatment reagents and measurement parameters used for hydride generation was evaluated. Due to memory effects observed, the appropriate read delay time was adjusted to 60 s resulting in RSDs 0.6% and 2.3% for As and Sb, respectively. The most suitable volumes of pre-reduction reagents for 10 mL of sample were 4 mL of KI/ascorbic acid (5%) and 6 mL of HCl (conc.). The determination of Sb was significantly interfered by HF, but the interference could be eliminated by adding 2 mL of saturated boric acid and heating the samples to 60 °C at least 45 min. The accuracy of the method was studied by analyses of SRM 1633b and two fly ash samples with the recovery test of added As and Sb. As high a recovery as 96% for SRM 1633b was reached for As using 193.696 nm with two-step ultrasound-assisted digestion. A recovery rate of 103% was obtained for Sb using 217.582 nm and the pre-reduction method with the addition of 2 mL of saturated boric acid and heating. The quantification limits for the determination of As and Sb in the fly ash samples using two-step ultrasound-assisted digestion followed with HG-ICP-OES were 0.89 and 1.37 mg kg−1, respectively. 相似文献
5.
The study was performed to compare the effect of magnesium modifier (magnesium nitrate) with that of other modifiers (palladium nitrate and nickel nitrate) in determination of arsenic, antimony and selenium by atomic absorption spectroscopy with atomization in a graphite tube, with generation of hydrides and in situ preconcentration in a graphite tube. The assumed criterion of a modifier performance was the magnitude of the analytical signal. It was found that in determinations with atomization in a graphite furnace the effects of all these modifiers were comparable, while in those with hydride generation and in situ preconcentration in a graphite tube the magnesium modifier showed poorer performance (25% decrease of the analytical signal). In determinations of arsenic and selenium the analytical signal obtained with magnesium salt as a modifier was comparable with those obtained in the presence of all other modifiers. 相似文献
6.
A new and sample technique for the simultaneous determination of trace arsenic, antimony, bismuth and selenium in biologic samples by hydride generation-four-channel nondispersive atomic fluorescence spectrometry was development. The conditions of instrumentation and hydride generation of arsenic, antimony, bismuth and selenium were optimized. For reducing hexavalent Se to the tetravalent state was to heat the sample with 6 mol l−1 HCl, and then pre-reducing pentavalent As and Sb to the trivalent state was achieved by the addition of 0.05 mol l−1 thiourea. The interferences of coexisting ions were evaluated. Under optimal conditions, the detection limits for As, Sb, Bi and Se were determined to be 0.03, 0.04, 0.04 and 0.03 ng ml−1, respectively. The precision for seven replicate determinations at the 5 ng ml−1 of As, Sb, Bi and Se were 0.9, 1.2, 1.3 and 1.5% (R.S.D.), respectively. The proposed method was successfully applied to the simultaneous determination of As, Sb, Bi and Se in a series of Chinese certified biological reference materials using simple aqueous standard calibration technique, the results obtained are in good agreement with the certified values. 相似文献
7.
A separation method utilizing a synthetic zeolite (mordenite) was developed in order to eliminate the gas phase interference of Sb(III) on As(III) during quartz furnace hydride generation atomic absorption spectrometric (HGAAS) determination. The efficiency of the proposed separation method in the reduction of suppression effects of transition metal ions on As(III) signal was also investigated. Among the volatile hydride-forming elements and their different oxidation states tested (Sb(III), Sb(V), Se(IV), Se(VI), Te(IV), and Te(VI)), only Sb(III) was found to have a signal depression effect even at low (μg l−1) concentrations under the experimental conditions employed. It has been shown that mordenite adsorbs Sb(III) quantitatively, even at a concentration of 1000 μg l−1, at pHs greater than two, and also, it reduces the initial concentrations of the transition metal ions to lower levels which can be tolerated in many studies. The adsorption of Sb(III) on mordenite follows the Freundlich isotherm and is endothermic in nature. 相似文献
8.
A simple and robust flow injection system which permits low sample and reagent consumption is described for rapid and reliable hydride generation atomic absorption spectrometric determination of selenium, arsenic and bismuth. The system, which composed of one peristaltic pump and one four channel solenoid valve, used water as the carrier streams for both sample and NaBH4 solution. Rapid off-line pre-reduction of the analytes was achieved by using hydroxylamine hydrochloride for selenium and a mixture of potassium iodide and ascorbic acid for arsenic and bismuth. Transition metal interference was eliminated with the addition of thiourea and EDTA into the NaBH4 solution and significant sensitivity enhancement was observed for selenium in the presence of thiourea in the reductant solution. Under optimised conditions, the method achieved detection limits of 0.2 ng mL−1 for Se, 0.5 ng mL−1 for As and 0.3 ng mL−1 for Bi. The method was very reproducible, achieving relative standard deviations of 6.3% for Se, 3.6% for As and 4.7% for Bi, and has a sample throughput of 360 h−1. Successful application of the method to the quantification of selenium, arsenic and bismuth in a certified reference river sediment sample is reported. 相似文献
9.
A cold trap system for the simultaneous determination of arsenic, antimony, selenium and tin by continuous hydride generation and gas phase molecular absorption spectrometry is described. The hydride generation is carried out in two steps; first, tin hydride is generated at low acidity and second, arsenic, antimony and selenium hydrides are formed at higher acidity. All the hydrides are collected in a liquid nitrogen cryogenic trap and transported to the flow cell of a diode array spectrophotometer, where molecular absorption spectra are obtained in the 190-250 nm range. Five calibration solutions containing arsenic, antimony, selenium and tin are solved using multiple linear regression analysis. Tests are performed in order to extend the same manifold to other hydrides but no signals are obtained for bismuth, cadmium, lead, tellurium and germanium. Under the optimum conditions found and using the wavelengths of maximum sensitivity (190, 198, 220 and 194 nm), the analytical characteristics of each element are calculated. The detection limits are 0.050, 0.020, 0.12 and 1.1 mug ml(-1) and the RSD values are 3.7, 3.1, 3.5 and 3.0% for As, Sb, Se and Sn, respectively. The method is applied to As, Sb, Se and Sn determination in natural spiked water samples. 相似文献
10.
İpek Menemenlioğlu Deniz KorkmazO. Yavuz Ataman 《Spectrochimica Acta Part B: Atomic Spectroscopy》2007
The analytical performance of a miniature quartz trap coupled with electrochemical hydride generator for antimony determination is described. A portion of the inlet arm of the conventional quartz tube atomizer was used as an integrated trap medium for on-line preconcentration of electrochemically generated hydrides. This configuration minimizes transfer lines and connections. A thin-layer of electrochemical flow through cell was constructed. Lead and platinum foils were employed as cathode and anode materials, respectively. Experimental operation conditions for hydride generation as well as the collection and revolatilization conditions for the generated hydrides in the inlet arm of the quartz tube atomizer were optimized. Interferences of copper, nickel, iron, cobalt, arsenic, selenium, lead and tin were examined both with and without the trap. 3σ limit of detection was estimated as 0.053 μg l− 1 for a sample size of 6.0 ml collected in 120 s. The trap has provided 18 fold sensitivity improvement as compared to electrochemical hydride generation alone. The accuracy of the proposed technique was evaluated with two standard reference materials; Trace Metals in Drinking Water, Cat # CRM-TMDW and Metals on Soil/Sediment #4, IRM-008. 相似文献
11.
Serap Titretir Erdal Kendüzler Yasin Arslan İbrahim Kula Sezgin Bakırdere O. Yavuz. Ataman 《Spectrochimica Acta Part B: Atomic Spectroscopy》2008
An electrically heated tungsten coil was used as a trap in the determination of antimony. The technique consists of three steps. Initially, SbH3 is formed by hydride generation procedure; then the analyte species in vapor form are transported to W-coil trap heated at 370 °C. Following the preconcentration step, the trap is heated to 895 °C; analyte species are revolatilized and transported to the flame-heated quartz atom cell where atomization and the formation of signal take place. The experimental parameters were optimized both for trap and no-trap studies. The most important experimental parameters are concentrations of HCl and NaBH4 solutions, H2 and Ar gas flow rates, and collection and revolatilization temperatures of W-coil. Accuracy was tested using a certified reference material, waste water EU-L-1. Limit of detection for the system is 16 ng l− 1 using a sample of 36 ml collected in 4.0 min. Enhancement factor in sensitivity was 17. 相似文献
12.
Determination of arsenic and antimony in milk by hydride generation atomic fluorescence spectrometry
A highly sensitive procedure has been developed for total arsenic and antimony determination in milk samples by hydride generation atomic fluorescence spectrometry after microwave-assisted sample digestion. The discrete introduction of 2 ml of digested sample in the automated continuous flow hydride generation system allows us to reduce drastically the sample and HCl consume and to determine several elements from a same sample digestion. The method provides detection limits of 0.006 and 0.003 ng ml−1, a sensitivity of 2390 and 2840 fluorescence units per ng ml−1 for As and Sb respectively, and average relative standard deviation of 2.3% for As and 4.8% for Sb. The analysis of cow milk samples, obtained from the Spanish market evidenced the presence of As at concentration levels from 3.4 to 11.6 ng g−1 and Sb levels from 3.5 to 11.9 ng g−1, thus in a proportion near to 1:1, which is in contrast with the 10:1 natural ratio between As and Sb and could evidence the effect of the introduction of new alloys and polymer materials in the industrial process of milk. The method was validated by the comparison of data found for commercial samples by using the proposed procedure and reference methods based on dry-ashing and AFS, and microwave-assisted digestion and inductively coupled plasma mass spectrometry determination. 相似文献
13.
14.
15.
Grazielle Cabral de Lima Ayla Campos do Lago Arley Alves Chaves Pedro Sergio Fadini Pedro Orival Luccas 《Analytica chimica acta》2013
This paper describes selenium determination based on Se0 preconcentration in the imprinted polymer (synthesized with 2.25 mmol SeO2, 4-vinylpyridine and 1-vinylimidazole) with subsequent detection on-line in HG-FAAS. During the synthesis, SeO2 is reduced to Se (0). Therefore, there are no MIP neither IIP in the present work, thus we denominated: AIP, i.e., atomically imprinted polymers. For the optimization of analytical parameters Doehlert design was used. The method presented limit of detection and limit of quantification of 53 and 177 ng L−1, respectively, and linear range from 0.17 up to 6 μg L−1 (r = 0.9936). The preconcentration factor (PF), consumptive index (CI) and concentration efficiency (CE) were 232; 0.06 mL and 58 min−1 respectively. The proposed method was successfully applied to determine Se in Brazil nuts (0.33 ± 0.03 mg kg−1), apricot (0.46 ± 0.02 mg kg−1), white bean (0.47 ± 0.03 mg kg−1), rice flour (0.47 ± 0.02 mg kg−1) and milk powder (0.22 ± 0.01 mg kg−1) samples. It was possible to do 12 analyzes per hour. Accuracy was checked and confirmed by analyzing certified reference material (DORM-2, dogfish muscle), and samples precision was satisfactory with RSD lower than 10%. 相似文献
16.
Zhi Xing Biekesailike Kuermaiti Juan Wang Guojun Han Sichun Zhang Xinrong Zhang 《Spectrochimica Acta Part B: Atomic Spectroscopy》2010,65(12):1056-1060
Simultaneous determination of As and Sb by hydride generation atomic fluorescence spectrometry was developed with the dielectric barrier discharge plasma as the hydride atomizer. The low-temperature and atmospheric-pressure micro-plasma was generated in a quartz cylindrical configuration device, which was constructed by an axial internal electrode and an outer electrode surrounding outside of the tube. The optimization of the atomizer construction and parameters for hydride generation and fluorescence detection systems were carried out. Under the optimized conditions, the detection limits for As and Sb were 0.04 and 0.05 μg L−1, respectively. In addition, the applicability of the present method was confirmed by the detection of As and Sb in reference materials of quartz sandstone (GBW07106) and argillaceous limestone (GBW07108). The present work provided a new approach to exploit the miniaturized hydride generation dielectric barrier discharge atomic fluorescence spectrometry system for simultaneous multi-element determination. 相似文献
17.
Anna TyburskaKrzysztof Jankowski Agnieszka Rodzik 《Spectrochimica Acta Part B: Atomic Spectroscopy》2011,66(7):517-521
A hydride generation headspace solid phase microextraction technique has been developed in combination with optical emission spectrometry for determination of total arsenic and selenium. Hydrides were generated in a 10 mL volume septum-sealed vial and subsequently collected onto a polydimethylsiloxane/Carboxen solid phase microextraction fiber from the headspace of sample solution. After completion of the sorption, the fiber was transferred into a thermal desorption unit and the analytes were vaporized and directly introduced into argon inductively coupled plasma or helium microwave induced plasma radiation source. Experimental conditions of hydride formation reaction as well as sorption and desorption of analytes have been optimized showing the significant effect of the type of the solid phase microextraction fiber coating, the sorption time and hydrochloric acid concentration of the sample solution on analytical characteristics of the method developed. The limits of detection of arsenic and selenium were 0.1 and 0.8 ng mL− 1, respectively. The limit of detection of selenium could be improved further using biosorption with baker's yeast Saccharomyces cerevisiae for analyte preconcentration. The technique was applied for the determination of total As and Se in real samples. 相似文献
18.
采用化学蒸气发生-四通道原子荧光光谱法测定了高纯金中的痕量砷、锑、铋和碲。用乙酸乙脂萃取分离金,水相还原后采用化学蒸气发生-四通道原子荧光光谱法测定高纯金中的痕量砷、锑、铋和碲。在最佳条件下,方法对As,Sb,Bi,Te的检出限分别为0.04,0.05,0.04,0.03 ng/mL(3σ);测定精密度分别为0.98,0.89,0.94,0.99%(对10 ng/mL As,Sb,Bi和Te混合标准,n=7)。方法对实际样品中的As,Sb,Bi,Te进行了同时测定,测定结果与标准方法无明显差异,各元素的加标回收率为95%~105%。 相似文献
19.
Zhenbin Gong Wing Fat Chan Xiaoru Wang Frank S. -C. Lee 《Analytica chimica acta》2001,450(1-2):207-214
The performance of a microwave plasma torch (MPT) discharge atomic emission spectrometry (AES) system directly coupled with hydride generation (HG) for the determination of As and Sb has been studied. The argon MPT system can sustain a stable plasma over a wide range of carrier and support gas flow rates with optimum performance at 250 and 1450 ml min−1, respectively. The presence of trace amount of water in the MPT discharge is found to affect the detection limits and the signal to noise ratio. A PTFE membrane separator is applied for hydride introduction and water rejection. In addition, the membrane cell separator also improves the signal to noise ratio by serving as a pressure buffer to minimize noise due to pressure fluctuation. Detection limits (3σ) of 8.1 and 3.2 ng ml−1 are obtained with the analytical lines As I 228.812 nm and Sb I 259.809 nm, respectively at an MPT power of 135 W. The detection limits are improved when a concentrated sulfuric acid cell is placed after the membrane cell to further remove water. This double cell system yields detection limits of 5.3 and 2.1 ng ml−1 for As and Sb, respectively under the same operating conditions. Linear dynamic ranges of three orders of magnitude could be obtained. 相似文献
20.
Pawel Pohl Israel Jimenéz Zapata Nicolas H. Bings Edgar Voges José A.C. Broekaert 《Spectrochimica Acta Part B: Atomic Spectroscopy》2007
Continuous flow chemical hydride generation coupled directly to a 40 W, atmospheric pressure, 2.45 GHz microwave microstrip Ar plasma operated inside a capillary channel in a sapphire wafer has been optimized for the emission spectrometric determination of As and Sb. The effect of the NaBH4 concentration, the concentration of HCl, HNO3 and H2SO4 used for sample acidification, the Ar flow rate, the reagent flow rates, the liquid volume in the separator as well as the presence of interfering metals such as Fe, Cu, Ni, Co, Zn, Cd, Mn, Pb and Cr, was investigated in detail. A considerable influence of Fe(III) (enhancement of up to 50 %) for As(V) and of Fe(III), Cu(II) and Cr(III) (suppression of up to 75%) as well as of Cd(II) and Mn(II) (suppression by up to 25%) for Sb(III) was found to occur, which did not change by more than a factor of 2 in the concentration range of 2–20 μg ml− 1. The microstrip plasma tolerated the introduction of 4.2 ml min− 1 of H2 in the Ar working gas, which corresponded to an H2/Ar ratio of 28%. Under these conditions, the excitation temperature as measured with Ar atom lines and the electron number density as determined from the Stark broadening of the Hβ line was of the order of 5500 K and 1.50 · 1014 cm− 3, respectively. Detection limits (3σ) of 18 ng ml− 1 for As and 31 ng ml− 1 for Sb were found and the calibration curves were linear over 2 orders of magnitude. With the procedure developed As and Sb could be determined at the 45 and 6.4 μg ml− 1 level in a galvanic bath solution containing 2.5% of NiSO4. Additionally, As was determined in a coal fly ash reference material (NIST SRM 1633a) with a certified concentration of As of 145 ± 15 μg g− 1 and a value of 144 ± 4 μg g− 1 was found. 相似文献