首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bi4‐xSbxTi3O12 (BSTO) (x = 0, 0.03, 0.04, 0.05, 0.06 and 0.07) thin films have been fabricated on Pt/Ti/SiO2/Si substrates by sol‐gel method. The effects of various Sb3+ content on microstructure and ferroelectric properties of systems are investigated. XRD show that Bi4‐xSbxTi3O12 (x≠0) thin films prefer (117) orientation. The substitution Sb3+ for Bi3+ reduces the grain size of the film surface. Compared to the BTO (x = 0) film, Bi4‐xSbxTi3O12 films display exciting electric properties. Especially when x = 0.04, the film Bi3.96Sb0.04Ti3O12 has achieved the max 2Pr value of 87μC/cm2. This film also has a better anti‐fatigue characteristic, which can be up to 1010 switching cycles without fatigue. The leakage current density improved with J = 8×10−8 A/cm2.  相似文献   

2.
The mixed rare earth oxide (Dy1‐xErx)2O3 (0.0 ≤ x ≤ 1.0) were synthesized by a sol–gel process. X‐ray and neutron diffraction data were collected and crystal structure and microstructure analyses were performed using Rietveld refinement method. All samples were found to have the same crystal structure and formed solid solutions over the whole range of x. Preferential cationic distribution is found for all samples but with different extent with Dy3+ preferring the 8b among the two non‐equivalent sites 8b and 24d of the space group Ia3. The lattice parameter is found to vary linearly with the composition x and a systematic variation is found in the r.m.s microstrain . Magnetization measurements were done in the temperature range 5‐300 K and a behavior in accordance with Curie‐Weiss law was found. Anomalous concentration dependence is found in magnetic susceptibility which is ascribed to the concentration dependence of effective crystal field combined with the contribution of 4I15/2 and 6H15/2 manifold at elevated temperature. The effective magnetic moments μeff is found to decrease linearly with composition parameter x, except for sample x=0.5 where the magnetization is enhanced. The Curie‐Weiss paramagnetic temperatures indicated antiferromagnetic interaction. These magnetic results are discussed in view of the cationic distribution. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
Copper iron oxides, Cu1‐xFe2+xO4 (0 ≤ x ≤ 0.5), have been synthesized by thermal oxidation of copper ‐ iron mixtures. In this process, the phase formation and the phase stability were investigated as function of the temperature (800°C – 1200°C) and the oxygen partial pressure (1.013 x 101 – 1.013 x 105 Pa). The phase formation starts with the reaction of the metallic components to simple oxides (Fe3O4, Fe2O3, CuO). From these simple oxides, the formation of complex oxides requires a minimum temperature of 800°C. The synthesis of single phase spinel compounds Cu2+1‐2x Cu1+xFe2+xO4±δ is realized for 0.1 ≤ x ≤ 0.5, using specific temperature – p(O2) – conditions for a given value of x. Remarkably, to achieve our goal, we found that the increase of x implies that of the reaction temperature and/or a decrease of the p(O2) in the reaction gas stream. Besides, a single phase spinel CuFe2O4 does not exist in the temperature / p(O2)‐field investigated. Using the results of XRD ‐ phase analysis, T ‐ p(O2) – x – diagrams were constructed. These diagrams allow the prediction of phase compositions expected for different synthesis conditions. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
Room‐temperature magnetization hysterisis measurements were conducted on Mn0.5Zn0.5GdxFe(2‐x)O4 ferrite nanoparticles, with x = 0, 0.5, 1.0, 1.5. The structure of this ferrite is normal spinel where the added of Gd3+ ions occupied the octahedral sites and replaces Fe3+ ions. The saturation magnetization was found to increase with the initial addition of the Gd3+ ions followed by a sharp decrease with further addition of Gd3+ ions. The Curie temperature was found to increase up to Gd3+ concentration of x = 1.0, and then decreases at x = 1.5. These results were attributed to the surface spins. Because the size of Gd3+ ions is larger than that of Fe3+ ions, the substitution of Fe3+ ions with the Gd3+ ions results in surface disorder which results in surface spins. A core‐shell magnetization model was introduced where several factors were combined to explain our results. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
Nanopowders of Y2O3 pure, doped and codoped by Nd3+, Yb3+ were obtained by sol‐gel method. Solution with ethylene glycol was choosed as the proper solution where crystallites of powder with Nd and Yb dopants had the same size. Finally the one‐phased compounds of Y2O3 doped 0.5 at% Nd and 1, 2 or 4 at% Yb were obtained. Grain growth and their morphology were investigated in various temperature and time of heating. The changes of crystallite sizes and lattice constants in relation to the heating time and temperature for the composition Y2O3 doped 0.5 at% Nd and 2 at% Yb are presented. Y2O3 containing 0,5 at% of Nd exhibits intense luminescence bands centered at 920 nm, 1100 nm and 1360 nm whereas a single band at about 1020 nm appears in samples co‐doped with neodymium and ytterbium. Luminescence spectra recorded did not depend on the sample preparation procedure and size of grains. OH impurity affects critically the relaxation dynamics of luminescent ion in nanopowders. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
The Rare earth mixed oxides Dy2‐xHox O3 (0.0 ≤ x ≤ 2.0) solid solution was synthesized by a sol–gel process. X‐ray diffraction (XRD) data were collected and crystal structure and microstructure analyses were performed applying Rietveld refinement method. Infrared and Raman spectroscopy were used to define the microstructure and to locally probe the structure of the samples. The cationic distribution over the two non‐equivalent sites 8b and 24d of the space group Ia3 is found to be randomly. The crystallite size and microstrain as well as Raman modes positions are influenced by Ho3+ concentration. The apparent size is isotropic but significant anisotropy is found for the microstrain with its largest value along the crystallographic direction [h00]. Inspite the single phase solid solution confirmed by Rietveld analysis for all samples, Raman spectra detected the coexistence of two phases; cubic and distorted monoclinic of too small amount or highly disordered, i.e. amorphous like, to be detected by XRD. The result indicates the ability of Raman spectroscopy to detect minor phases in solid solutions. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
Single crystals of GdCa4O(BO3)3 (GdCOB) pure and doped with Eu concentration of 1 and 4 at% were grown by the Czochralski and micropulling‐down methods. The distribution of Eu ions in GdCOB crystals was uniform. The substitutions of Eu3+ in Gd, Ca(1) and Ca(2) cation sites and eventually formation Eu2+ have been investigated. The spectroscopic properties of crystals are compared with the properties of nanopowders obtained by sol‐gel method. Radioluminescence spectra of undoped GdCOB crystal show the characteristic emission of Gd3+ at about 312 nm, whereas this emission dramatically decreases in Eu‐doped crystals upon X‐ray excitation, as well as in Eu‐doped nanopowders excited in vacuum ultraviolet (VUV) region. The VUV excitation in the range 125‐333 nm for Eu‐doped samples leads to strong emission in red coming from the 5D0 multiplet of Eu3+, only. In the photoluminescence decay kinetics of 312 nm emissions substantial shortening and departure for single exponential decay in Eu‐doped samples is clearly observed. Higher Eu doping results in further acceleration of the decay. In undoped GdCOB crystal, the lifetime of the Gd3+ 6P7/2 multiplet is 2.79 ms. The Eu3+ 5D0 decay kinetics monitored at 613 nm are rather constant. Numerical fitting of fully exponential curves, reveals lifetimes 2.7 ms for nanopowder and 2.5 ms for single crystal. The results suggest that this material may be used as a red phosphor in plasma display panels in nanopowder form because of strong excitation band of Eu3+ luminescence in the 160‐200 nm regions. Contrary to nanopowder sample, such an excitation band, attributed to the Gd3+–O2– charge transfer was not observed in crystal obtained by the micropulling‐down method. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
The mixed oxides Zn1‐xMgxO (ZMO) were prepared as nano‐polycrystalline powders and thin films by a simple sol–gel process and dip coating method. Thermogravimetric (TG) and differential thermal analysis (DTA) were used to study the thermal chemistry properties of dried gel. Structural and microstructural analysis was carried out applying x‐ray diffraction (XRD) and Rietveld method. Analysis showed that for x < 0.25, Mg replaces Zn substitutionally yielding ZMO single phase, while for x ≥ 0.25 two phases are identified ZMO and MgO. Replacing Zn2+ by Mg2+ distorts the cation tetrahedrons and decreases the lattice constants ratio c/a of the wurtzite ZMO which deviate the lattice gradually from the hexagonal structure as Mg+2 increases. These distortions are attributed to the difference in electronic configuration of the two cations which suppress the paraelectric‐ferroelectric phase transition in the ZMO wurtzite. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
Substituted barium hexaferrites, BaFe12‐2xZnxTixO19 (0 ≤ x ≤ 2), have been synthesized by thermal decomposition of freeze‐dried acetate precursors. Decomposition and phase formation were investigated by means of thermal analysis, XRD and IR spectroscopy. The initially amorphous decomposed precursor reacts to the substituted hexaferrite via a spinel‐like maghemite (γ‐Fe2O3) and Zn/Ti containing spinel ferrites. The synthesis method allows a decrease of the reaction temperature and time, necessary for producing a single phase hexaferrite. At relative low reaction temperatures, the substitution rate x shows remarkable differences at different iron sublattices. For x ≤ 0,8 this selective substitution results in an increase of magnetization as x grows. (© 2003 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
Nd‐doped ZnO nanoparticles with different concentration were synthesized by sol‐gel method. The structures, magnetic and optical properties of as‐synthesized nanorods were investigated. X‐ray diffraction (XRD) and x‐ray photoelectron spectroscopy (XPS) results demonstrated that Nd ions were incorporated into ZnO lattice; but Zn1‐xNdxO nanoparticles with Nd concentration of x = 0.05 showed Nd2O3 phase, so the saturation concentration of Nd in Zn1‐xNdxO is less than 5 at%. Vibrating sample magnetometer (VSM) measurements indicated that Nd doped ZnO possessed dilute ferromagnetis behaviour at room temperature. Photoluminescence spectroscopy (PL) showed that Nd ions doping induced a red slight shift and decrease in UV emission with increase of Nd concentration.  相似文献   

11.
Single crystals of Sr3Gd(BO3)3 (SGB) and Sr3TbxGd1‐x(BO3)3 (TSGB) with dimension Ø 20 mm×20 mm have been grown by Czochralski method. The grown crystals were characterized by X‐ray powder diffraction analysis which showed the crystals belong to hexagonal structure with lattice parameters of a=b=1.254 nm, c=0.926 nm (SGB) and a=b=1.253 nm, c=0.925 nm (TSGB). In TSGB, x=17.7% was obtained by X‐ray fluorometry which showed the segregation coefficient of Tb is closed to 1. The transmission spectrum was measured, which indicated the crystals have high transmittance in 400‐1100 nm region. The Faraday rotation of single crystals at 532 nm wavelength was measured at room temperature. Finally, the Verdet constants were investigated, (SGB) V=17.9 degcm‐1T‐1 and (TSGB) V=21.3 degcm‐1T‐1. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
Spectroscopic ellipsometry in the infrared spectral range 250‐5000 cm‐1 is used for analysis of the dielectric response of Zn1‐x‐yBexMgySe and Zn1‐x‐yBexMnySe crystals grown by a high‐pressure Bridgman method. Ellipsometric spectra display features in the spectral range 390‐500 cm‐1 associated with BeSe‐type phonon modes. In the optical spectra of Zn1‐x‐yBexMgySe crystals both BeSe‐type and MgSe‐type lattice absorption bands are detected. The MgSe‐like modes are located at approximately 300 cm‐1. The complex dielectric functions can be reproduced using a model with two or three and one or two classical damped oscillators corresponding to the BeSe‐like and the MgSe‐like transverse‐optical phonon modes, respectively. The frequencies of longitudinal‐optical phonons have been derived from the dielectric loss functions. A red‐shift of the BeSe‐like phonons frequencies with a mean rate 0.42 cm‐1 (0.50 cm‐1) per mole percent of Mg (Mn) incorporated to the alloy has been found for examined concentration range x, y ≤ 0.25. A noticeable damping the intensities of BeSe‐type modes with increasing fraction of Mg and Mn dopant is observed in comparison to the strengths of BeSe‐type modes in Zn1‐xBexSe crystals. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
The influence of Y2O3 and CdO content on the phase composition, structure, and electrical properties of Y2O3-CdO-BaO-CuO ceramics was studied. The concentration limits of the existence of the orthorhombic perovskite-like YxBa2 ? x CdyCu1 ? y O3 + δ solid solutions (where 0.20 ≤ x ≤ 0.37 and y ≤ 0.2) and their unit-cell parameters are determined.  相似文献   

14.
MgxZn1‐xO (x=0.01‐0.3) nanoparticles were synthesized by the sol‐gel technique using solutions of Mg and Zn based organometalic compounds. The electrical properties of Mg doped zinc oxide (ZnO) were studied within wide temperature range from 300 to 500 K under the N2 gas flow (flow rate: 20 sccm) and in the frequency range from 40 Hz to 1 MHz for ac electrical measurements. The dc conductivities and the activation energies were found to be in the range of 10‐9‐10‐6 S/cm at the room temperature and 0.26‐0.86 eV respectively depending on doping rate of these samples. The ac conductivity was well represented by the power law Aωs. The conduction mechanism for all doped ZnO could be related to correlated barrier hopping (CBH) model. The complex impedance plots (Nyquist plot) showed the data points lying on a single semicircle, implying the response originated from a single capacitive element corresponding to the nanoparticle grains. The crystal structures of the MgxZn1‐xO nanoparticles were characterized using X‐ray diffraction. The calculated average particle sizes values of Zn1‐xMgxO samples are found between 29.72 and 22.43 nm using the Sherrer equation. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
Mn‐doped ZnO were synthesized by solid state reaction and sol‐gel method respectively. It was found that samples synthesized by solid state reaction containing Mn2O3 and MnO2 are a mixture of ferromagnetic and paramagnetic phases. Contrary, samples without second phases were found to be paramagnetic at room temperature. According to previous report, interface effects between Zn‐rich Mn2O3 and MnO2 interfaces may be the origin of the ferromagnetic behavior observed in our samples prepared by solid reaction, so the alloy of Zn1−xMnxO may be paramagnetic at room temperature. Prepared by sol‐gel technique, the samples without second phases in the XRD patterns are also room‐temperature paramagnetic. Therefore we believe that the magnetism of Zn1−xMnxO is paramagnetic at room temperature. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
ESR and optical absorption of Cu2+ were measured in xNa2O(100?x)B2O3 (1 ≤ x ≤ 75), x ZnO(100?x)B2O3 (46 ≤ x ≤ 64) and x Pb(100?x)b2O3 (20 ≤ x ≤ 75) glasses, where x is expressed in mol.%. Spin hamiltonian parameters and ligand field absorption energy changed abruptly in the regions of 15 ≤ x ≤ 23 and 37 ≤ x ≤ 55 in the soda system, while both parameters were hardly dependent upon the glass composition in zinc and lead systems. The magnitude of micro-environmental fluctuation of Cu2+-complexes in the glasses was estimated qualitatively and correlated with the distribution of the strength of π-bonding between cupric ion and oxygen in the glass. Typical network modifiers and intermediates behaved differently, especially in the composition region of invert glass; the large deformation of the coordination sphere of Cu2+ in lead glasses due to the stronger PbO bond resulted in the large distribution of g. The situation was reverse in the case of soda glasses.  相似文献   

17.
The thermal decomposition of freeze‐dried Li‐Mn(II)‐Fe(III)‐formate precursors was investigated by means of DTA, TG and mass spectroscopy. By the thermal treatment of the prefired precursors between 400 and 1000°C, single phase solid solutions LixMn1+xFe2–2xO4 (0 ≤ x ≤ 1) with cubic spinel structure were obtained. To get single phase spinels, special conditions concerning the temperature T and the oxygen partial pressure p(O2) during the synthesis are required. Because of the high reactivity of the freeze‐dried precursors, in comparison with the conventional solid state reaction, the reaction temperature can be lowered by 200°C. The cation distribution and the properties of the Li‐Mn‐ferrites were studied by chemical analysis, X‐ray powder diffraction and magnetization measurements. It was found that for high substitution rates, almost all lithium occupies the tetrahedral coordinated A‐sites of the spinel lattice AB2O4, while at small x‐values, lithium ions are distributed over the tetrahedral and octahedral sites. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
Large single crystals of optical quality of BiB3O6:RE3+ (RE3+ = Pr3+, Nd3+, Gd3+, Er3+, Tm3+) were grown from nearly stoichiometric melts using the top‐seeding growth technique to dimensions up to 12 x 12 x 18 mm3. Absorption spectra were measured in the wavelength range from 10000 cm‐1 to 30000 cm‐1 with an absorption spectrometer to estimate the doping concentration of RE3+. For the determination of the phonon energies and the quenching behaviour of the host lattice IR and Raman spectra were recorded.  相似文献   

19.
The floating zone growth of magneto‐optical crystal YFeO3 has been investigated. The polycrystalline feed rod was prepared by a pressure of 250MPa and sintering at about 1500°C. A crack‐ free YFeO3 single crystal has been successfully grown. The crystal preferred to crystallize along <100> direction with about 10° deviation. The X‐ray rocking curve of the crystal has a FWHM of 24 arcsec, confirming the high crystal quality of the sample. The (100) plane was etched by hot phosphoric acid and the dislocation density was about 104/cm2. A thin outer layer with Y2O3‐rich composition was found at the periphery of as‐grown crystals, which was attributed to the Fe2O3 evaporation during growth. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
《Journal of Non》2006,352(23-25):2385-2389
In order to find a new glass host and optimize erbium doping for IR glass optical amplifiers in photonic applications, a study on the optimization of the emission of erbium ions in the SiO2–Al2O3 glass by codoping with Y2O3 is performed. It is first attempted to make a new sol–gel glass host based on SiO2, Al2O3, and Y2O3 doped with Er3+ ions of the composition (1−x)SiO2xAl2O3yY2O3:0.65Er2O3 (in mol%), x varies from 0 to 65, and y from 0 to 4. The optimal proportion in mol% of SiO2 and Al2O3 for the Er3+ emission (at a fixed optimal concentration of 0.65) was 65 – 35. The effect of Y2O3 content on photoluminescence, decay curve profiles and lifetime of the 4I13/2 level of Er3+ in SiO2–Al2O3 glass is observed. The largest quantum efficiency and the higher emission intensity are observed in the sample with 65Al2O3 and 4Y2O3. The emission intensity at 1530 nm is two times higher than in glasses without Y2O3. A shift of 3 nm to shorter wavelengths is observed. The emission spectral profiles are flatter and broader for the glasses containing Al and Y (bandwidth of 59.5 nm). The decay curves show strong difference profiles for the different samples. The increase of the lifetime value τ (about ms) of the 4I13/2 level of Er3+ in the SiO2–Al2O3 with the Y2O3 is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号