首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The in situ prepared three‐component system Pd(OAc)2–1,3‐dialkylbenzimidazolium chlorides ( 2a – f ) and Cs2CO3 catalyses, quantitatively, the Suzuki cross‐coupling of deactivated aryl chlorides and Heck coupling reactions of aryl bromide and iodide substrates. The 1,3‐dialkylbenzimidazolium salts ( 2a – f ) were characterized by conventional spectroscopic methods and elemental analysis. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

2.
From readily available starting compounds, six functionalized 1,3‐dialkylbenzimidazolium salts ( 2a–c and 4a–c ) have been prepared and characterized by conventional spectroscopic methods and elemental analyses. A highly effective, easy to handle, and environmentally benign process for palladium‐mediated Suzuki cross‐coupling was developed. The in situ prepared three‐component systems Pd(OAc)2/1,3‐dialkylbenzimidazolium chlorides and Cs2CO3 catalyze quantitatively the Suzuki cross‐coupling of deactivated aryl chlorides. © 2004 Wiley Periodicals, Inc. Heteroatom Chem 15:419–423, 2004; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/hc.20034  相似文献   

3.
Novel 1,3‐dialkylimidazolidinium, 1,3‐dialkyl‐3,4,5,6‐tetrahydropyrimidinium, and 1,3‐dialkyl‐1H‐4,5,6,7‐tetrahydrodiazepinium hexafluorophosphates ( 1a–c, 2a–c ) as N‐heterocyclic carbene precursors have been synthesized and characterized. The incorporation of saturated N‐heterocyclic carbenes into palladium precatalysts gives high‐catalyst activity in the Heck coupling of aryl bromide substrates in aqueous media. The complexes were generated in the presence of Pd(OAc)2 by in situ deprotonation of 1,3‐dialkylazolinium salts 1, 2 . © 2008 Wiley Periodicals, Inc. Heteroatom Chem 19:82–86, 2008; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20415  相似文献   

4.
A highly effective, easy to handle and environmentally benign process for palladium‐mediated Suzuki cross‐coupling is developed. The in situ prepared three‐component system Pd(OAc)2–1,3‐bis(alkyl)imidazolinium chlorides (2a–f) and Cs2CO3 catalyses quantitatively the Suzuki cross‐coupling of deactivated aryl chlorides. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

5.
Novel ruthenium‐1,3‐dialkylimidazolin‐2‐ylidene complexes ( 2a–e ) have been prepared and characterized by C, H, N analysis, 1H‐NMR and 13C‐NMR. The ortho position of the aromatic ring of pyridyl group substituted aromatic compound was directly arylated with aryl bromides and chlorides in the presence of a catalytic amount of [RuCl2(1,3‐dialkylimidazolin‐2‐ylidene)] complexes. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
The reaction of 2‐(2‐bromoethyl)‐1,3‐dioxane with 1‐alkylbenzimidazole derivatives results in the formation of the new benzimidazolium salts (1). The reaction of Pd(OAc)2 with 1,3‐dialkylbenzimidazolium salts (1a–c) yields palladium N‐heterocyclic carbene (NHC) complexes (2a–c). All synthesized compounds were characterized by 1H NMR, 13 C NMR, IR and elemental analysis techniques which support the proposed structures. As catalysts, these new palladium complexes offer a simple and efficient methodology for the synthesis of triarylamines and secondary amines from anilines and amines and in a single step with potassium tertiary butoxide as a base. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
The in situ prepared three component system Pd(OAc)2, 1,3‐dialkylbenzimidazolium halides ( 1a‐e ) and t‐BuOK catalyses quantitatively the Suzuki cross‐coupling of deactivated aryl chloride substrates. 1,3‐Dialkylbenzimidazolium salts ( 1a‐e ) were characterized by conventional spectroscopic methods and elemental analyses.  相似文献   

8.
A series of 2‐substituted benzimidazoles, benzoxazoles were synthesized by the condensation reactions of 1‐aryl‐4‐carboxy‐2‐pyrrolidinones and aromatic ortho‐diamines or ortho‐aminophenol. Alkylation of benzimidazoles with iodoalkanes led to 1‐aryl‐4‐(1‐alkyl‐1H‐benzimidazol‐2‐yl)‐2‐pyrrolidin‐ ones or 1,3‐dialkylbenzimidazolium iodides. N‐Subs‐ tituted γ‐amino acids were prepared by the hydrolysis of 1‐aryl‐4‐(1H‐benzimidazol‐2‐yl)‐2‐pyrrolidinones in sodium hydroxide solution, followed by treatment with acetic acid. The structure of the synthesized pro‐ ducts was investigated using IR and 1H, 13C NMR spectra, MM2 molecular mechanics, and AM1 semi‐ empirical quantum mechanical methods. © 2006 Wiley Periodicals, Inc. Heteroatom Chem 17:47–56, 2006; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20171  相似文献   

9.
N‐Heterocyclic carbenes (NHCs) are of great importance and are powerful ligands for transition metals. A new series of sterically hindered benzimidazole‐based NHC ligands (LHX) ( 2a , 2b , 2c , 2d , 2e , 2f ), silver–NHC complexes ( 3a , 3b , 3c , 3d , 3e , 3f ) and palladium–NHC complexes ( 4a , 4b , 4c , 4d , 4e , 4f ) have been synthesized and characterized using appropriate spectroscopic techniques. Studies have focused on the development of a more efficient catalytic system for the Suzuki coupling reaction of aryl chlorides. Catalytic performance of Pd–NHC complexes and in situ prepared Pd(OAc)2/LHX catalysts has been investigated for the Suzuki cross‐coupling reaction under mild reaction conditions in aqueous N,N‐dimethylformamide (DMF). These complexes smoothly catalyzed the Suzuki–Miyaura reactions of electron‐rich and electron‐poor aryl chlorides. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
A straightforward strategy is proposed for the synthesis of novel, amphiphilic block–graft MPEG‐b‐(PαN3CL‐g‐alkyne) degradable copolymers. First, the ring‐opening polymerization of α‐chloro‐ε‐caprolactone (αClCL) was initiated by hydroxy‐terminated macroinitiator monomethoxy poly(ethylene glycol) (MPEG) with SnOct2 as the catalyst. In a second step, pendent chlorides were converted into azides by the reaction with sodium azide. Finally, various kinds of terminal alkynes were reacted with pendent azides by copper‐catalyzed Huisgen's 1,3‐dipolar cycloaddition, and thus a “click” reaction. These copolymers were characterized by differential scanning calorimetry (DSC), 1H NMR, IR, and gel permeation chromatography. By fixing the length of the MPEG block and increasing the length of PαClCL (or PαN3CL) block, an increase tendency in Tgs was observed. However, the copolymers of MPEG‐b‐PαClCL and MPEG‐b‐PαN3CL were semicrystalline when the Mn of MPEG was above 2000 g mol?1. The block–graft copolymers formed micelles in the aqueous phase with critical micelle concentrations (CMCs) in the range of 1.4–12.0 mg L?1 depending on the composition of polymers. The lengths of hydrophilic segment influence the shape of the micelle. The mean hydrodynamic diameters of the micelles from dynamic light scattering were in the range of 90–160 nm. In vitro hydrolytic degradation of block–graft copolymers is faster than the corresponding block copolymers. The drug entrapment efficiency and the drug loading content of micelles depending on the composition of block–graft polymers were described. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4320–4331, 2008  相似文献   

11.
Microwave‐assisted condensation of 1,3,‐2‐dioxaphosphinane 2‐oxide ( 1 ), paraformaldehyde and secondary amines including 5‐ and 6‐membered N‐heterocycles at 55°C gave cyclic aminomethylphosphonates ( 2 ), whereas an analogous reaction involving dibenzo[c.e][1,2]oxaphosphinane 2‐oxide ( 3 ) resulted in the corresponding aminomethyl‐2‐(2′‐hydroxybiphenyl)phosphinic acids ( 4 ) as a consequence of a hydrolytic ring opening following the condensation. © 2008 Wiley Periodicals, Inc. Heteroatom Chem 19:207–210, 2008; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20387  相似文献   

12.
Stereospecific synthesis of a family of novel (E)‐2‐aryl‐1‐silylalka‐1,4‐dienes or (E)‐4‐aryl‐5‐silylpenta‐1,2,4‐trienes via a cross‐coupling of (Z)‐silyl(stannyl)ethenes with allyl halides or propargyl bromide is described. In the reaction with allyl bromide, either a Pd(dba)2? CuI combination (dba, dibenzylideneacetone) in DMF or copper(I) iodide in DMSO–THF readily catalyzes or mediates the coupling reaction of (Z)‐silyl(stannyl)ethenes at room temperature, producing novel vinylsilanes bearing an allyl group β to silicon with cis ‐disposition in good yields. Allyl chlorides as halides can be used in the CuI‐mediated reaction. CuI alone much more effectively mediates the cross‐coupling reaction with propargyl bromide in DMSO–THF at room temperature compared with a Pd(dba)2? CuI combination catalysis in DMF, providing novel stereodefined vinylsilanes bearing an allenyl group β to silicon with cis ‐disposition in good yields. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
Monocyclopentadienyl titanium imidazolin‐2‐iminato complexes [Cp′Ti(L)X2] 1a (Cp′ = cyclopentadienyl, L = 1,3‐di‐tert‐butylimidazolin‐2‐imide, X = Cl), 1b (X = CH3); 2 (Cp′ = cyclopentadienyl, L = 1,3‐diisopropylimidazolin‐2‐imide, X = Cl); 3 (Cp′ = tert‐butylcyclopentadienyl, L = 1,3‐di‐tert‐butylimidazolin‐2‐imide, X = Cl), upon activation with methylaluminoxane (MAO) were active for the polymerization of ethylene and propylene and the copolymerization of ethylene and 1‐hexene. Catalysts derived from imidazolin‐2‐iminato tropidinyl titanium complex 4 = [(Trop)Ti(L)Cl2] (Trop = tropidinyl, L = 1,3‐di‐tert‐butylimidazolin‐2‐imide) were much less active. Narrow polydispersities were observed for ethylene and propylene polymerization, but the copolymerization of ethylene/hexene led to bimodal molecular weight distributions. The productivity of catalysts derived from the dialkyl complex 1b activated with [Ph3C][B(C6F5)4] or B(C6F5)3 were less active for ethylene/hexene copolymerization but yielded ethylene/hexene copolymers of narrower molecular weight distributions than those derived from 1a/MAO. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6064–6070, 2008  相似文献   

14.
4‐Allylthio‐2‐arylquinazolines 4a–c undergo cyclization by action of bromine to furnish 5‐aryl‐3‐bromomethyl‐2,3‐dihydrothiazolo[3,2‐c]quinazolin‐4‐ium bromides 5a–c . Compounds 5a–c undergo ring opening by action of water under acid catalysis to afford the corresponding dibromide derivatives 6a–c . Bromination of 3‐allyl‐2‐aryl‐4(3H)quinazolinethiones 7a–c leads to 5‐aryl‐2‐bromomethyl‐2,3‐dihydrothiazolo[3,2‐c]quinazolin‐4‐ium bromides 8a–c . However, anhydro‐3‐hydroxy‐5‐aryl‐1,3‐thiazolo[3,2‐c]quinazolin‐4‐ium hydroxide 10a–c were prepared by the cyclodehydration of the corresponding thioglycolic acids 9a–c with Ac2O. © 2003 Wiley Periodicals, Inc. Heteroatom Chem 14:576–580, 2003; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/hc.10148  相似文献   

15.
2‐Dimethylaminomethylene‐ and 2‐ethoxymethylene‐1,3‐indendione 1a,b react with 6‐amino‐2‐thioxopyrimidin‐4(3H)‐one 2 in boiling acetic acid to give 2‐thioxo‐1,3‐dihydroindeno[3,2‐d]pyrimidino[4,5‐b]pyridine‐4,9‐dione ( 4 ). The latter compound reacts with hydrazonoyl chlorides 5a–c to afford products 12a–c . Formamidine 15 reacts with indene‐1,3‐dione in boiling ethanol to give acyclic compound 16 , which cyclizes to 12a in boiling glacial acetic acid. Also, enaminone 1a reacts with heterocyclic amines 17a–e in boiling ethanol, affording the corresponding substitution products 18a–c , respectively. The latter products 18a–c cyclize in glacial acetic acid to give 19a–c , respectively. The structures of the newly synthesized compounds are established on the basis of chemical and spectroscopic evidence. © 2003 Wiley Periodicals, Inc. Heteroatom Chem 14:491–497, 2003; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/hc.10166  相似文献   

16.
An efficient PdCl2(PCy3)2‐catalyzed cross‐coupling reaction of 2‐vinylpyridine with aryl chlorides to afford trans ‐2‐styrylpyridines with a variety of functional groups on the benzene ring is described. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
Half titanocenes (CpCH2CH2O)TiCl2 (1), (CpCH2CH2OCH3)TiCl3 (2), and CpTiCl3 (3), activated by methylaluminoxane (MAO) were tested in copolymerization of ethylene with internal olefins such as cyclopentene. All the catalysts were able to give incorporation of cyclopentene in polyethylene matrix. 13C NMR analysis of obtained copolymers showed that the catalytic systems have low regiospecificity. In fact, in ethylene–cyclopentene copolymers, cyclic olefin inserts with both 1,2 and 1,3‐enchainment. X‐ray powder diffraction analysis of these copolymers confirmed that 1,2 inserted cyclopentene units are excluded from crystalline phase, whereas 1,3‐cyclopentene units are included, giving rise to expansion of unit cell of crystalline polyethylene. Titanium‐based catalysts were investigated also in the copolymerization of ethylene with E and Z‐2‐butene. Only complex (1) was able to give copolymers and 13C NMR analysis of products showed 2‐3, 1‐3, and 1‐2 insertion of 2‐butene. Differential scanning calorimetry analysis displayed that ethylene–cyclopentene, as well as ethylene‐2‐butene, copolymers are crystalline and their melting point decreases by increasing the comonomer content. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4725–4733, 2008  相似文献   

18.
A series of 2‐(1H‐1,2,4‐triazol‐1‐yl)‐2H‐1,4‐benzothiazines were designed and synthesized by condensation of 1,2,4‐triazole‐substituted ω‐bromoacetophenones and o‐aminothiophenols with the aid of K2CO3 under mild conditions with moderate to high yields. © 2008 Wiley Periodicals, Inc. Heteroatom Chem 19:332–336, 2008; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20434  相似文献   

19.
From the reaction of 1H‐imidazole ( 1a ), 4,5‐dichloro‐1H‐imidazole ( 1b ) and 1H‐benzimidazole ( 1c ) with p‐cyanobenzyl bromide ( 2 ), symmetrically substituted N‐heterocyclic carbene (NHC) [( 3a–c )] precursors, 1‐methylimidazole ( 5a ), 4,5‐dichloro‐1‐methylimidazole ( 5b ) and 1‐methylbenzimidazole ( 5c ) with benzyl bromide ( 6 ), non‐symmetrically substituted N‐heterocyclic carbene (NHC) [( 7a–c )] precursors were synthesized. These NHC? precursors were then reacted with silver(I) acetate to yield the NHC‐silver complexes [1,3‐bis(4‐cyanobenzyl)imidazole‐2‐ylidene] silver(I) acetate ( 4a ), [4,5‐dichloro‐1,3‐bis(4‐cyanobenzyl)imidazole‐2‐ylidene] silver(I) acetate ( 4b ), [1,3‐bis(4‐cyanobenzyl)benzimidazole‐2‐ylidene] silver(I) acetate ( 4c ), (1‐methyl‐3‐benzylimidazole‐2‐ylidene) silver(I) acetate ( 8a ), (4,5‐dichloro‐1‐methyl‐3‐benzylimidazole‐2‐ylidene) silver(I) acetate ( 8b ) and (1‐methyl‐3‐benzylbenzimidazole‐2‐ylidene) silver(I) acetate ( 8c ) respectively. The four NHC‐precursors 3a–c, 7c and four NHC–silver complexes 4a–c and 8c were characterized by single crystal X‐ray diffraction. The preliminary antibacterial activity of all the compounds was studied against Gram‐negative bacteria Escherichia coli, and Gram‐positive bacteria Staphylococcus aureus using the qualitative Kirby‐Bauer disc‐diffusion method. All NHC–silver complexes exhibited medium to high antibacterial activity with areas of clearance ranging from 4 to 12 mm at the highest amount used, while the NHC‐precursors showed significantly lower activity. In addition, all NHC–silver complexes underwent preliminary cytotoxicity tests on the human renal‐cancer cell line Caki‐1 and showed medium to high cytotoxicity with IC50 values ranging from 53 ( ± 8) to 3.2 ( ± 0.6) µM. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
Cationic polymerizations of three 2‐substituted 1,3‐oxathiolanes, 2,2‐diphenyl‐1,3‐oxathiolane ( 1a ), 5‐methyl‐2,2‐diphenyl‐1,3‐oxathiolane ( 1b ), and 4‐methyl‐2,2‐diphenyl‐1,3‐oxathiolane ( 1c ), were carried out with boron trifluoride etherate (BF3 · OEt2) in dichloromethane at 30 °C to obtain poly(alkylene sulfide)s accompanying the elimination of benzophenone. In the cationic polymerization of 1b and 1c , the consumption of the monomers and formation of benzophenone proceeded simultaneously. The obtained poly(propylene sulfide)s from 1b and 1c contain 41% head–head units, which is in good agreement with that of the polymer from methylthiirane with BF3 · OEt2. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2943–2949, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号