首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We measured the transport properties of MgB2 films having columnar grain structure with their axis normal to the substrate. When an external magnetic field was applied parallel to the grain axis, an enhanced critical current density has been observed, and this result has been ascribed to flux pinning induced by grain boundaries. The shape of the angular dependence of critical current density and its magnetic field dependence showed a quite similar resemblance to those of YBa2Cu3Ox films containing columnar defects, implying a possible existence of linear defects in MgB2 films of columnar structure. We propose that the amorphous regions at the vertex points of three or more grain boundaries observed in microstructural studies correspond to the linear defects and these linear defects anchor the end points of the flux line dislocations of Frank-Read sources, by which the shear in the flux line lattice is actuated. This assumed mechanism is found to reasonably explain the magnetic field dependence of the flux pinning force density of MgB2 films with columnar grain structure.  相似文献   

2.
We have investigated the flux pinning effect of columnar grain boundary in columnar-structured and single crystalline MgB2 films. The MgB2 films with columnar structure showed much higher Jc than that of single crystalline thin film, and sample having smaller grain size had a higher Jc in high magnetic fields. At 5 K, the MgB2 film with grain size of 460 nm showed an abnormal double-peak behavior in pining force density, Fp(B), caused by competition of different types of pinning sites, such as planar defects and point defects. Field dependences of Fp in columnar-structured films suggest that the columnar grain boundary is a strong pinning source in the MgB2 film and it plays a crucial role in enhancing Jc over a wide range of magnetic fields and temperatures.  相似文献   

3.
《Current Applied Physics》2018,18(6):762-766
We report a facile method to enhance the critical current density (Jc) of superconducting MgB2 thin films. MgB2 thin films were deposited on zinc acetate dehydrate (Zn(CH3COO)22H2O) spin-coated Al2O3 (000l) substrates by using a hybrid physical-chemical vapor deposition system at low temperatures. Synthesis of MgB2 at low temperatures can reduce the substitution of Zn into the Mg site, hence avoiding the reduction of superconducting critical temperature. MgB2 thin films grown on ZnO-buffered layers showed a significant enhancement of Jc in the magnetic field due to the creation of additional pinning sources, namely point defects and grain boundaries. Broad peaks were observed in the magnetic field dependence of the flux pinning force density, indicating competition of different pinning sources.  相似文献   

4.
The magnetoresistivity and critical current density of well characterized Si-nanoparticle doped and undoped Cu-sheathed MgB2 tapes have been measured at temperatures T≥28 K in magnetic fields B≤0.9 T. The irreversibility line Birr(T) for doped tape shows a stepwise variation with a kink around 0.3 T. Such Birr(T) variation is typical for high-temperature superconductors with columnar defects (a kink occurs near the matching field B?) and is very different from a smooth Birr(T) variation in undoped MgB2 samples. The microstructure studies of nanoparticle doped MgB2 samples show uniformly dispersed nanoprecipitates, which probably act as a correlated disorder. The observed difference between the field variations of the critical current density and pinning force density of the doped and undoped tape supports the above findings.  相似文献   

5.
The field dependences of the critical current density of the HTSC compound YBa2Cu3O y recovered at T = 920?C950°C after the low-temperature treatment have been investigated. At T = 200°C, structural defects are formed in a wet environment, which are capable of initiating pinning of magnetic vortices. A short-term (1?C3 h) recovery annealing performed at T = 930?C950°C leaves in the samples a fairly large amount of structural defects formed during the low-temperature treatment, which results in a substantial increase in the critical current density in magnetic fields of ??2 T as compared to the ceramics not subjected to double annealing. A longer high-temperature treatment removes the structural defects formed and brings the electrophysical properties of YBa2Cu3O y to the level characteristic of the ceramics produced by standard technology.  相似文献   

6.
In this paper we aimed at investigating the flux pinning property of MgB2 films on hastelloy tapes which are buffered on various thicknesses of SiC layers. We have observed that the increase in thickness of the SiC buffer layer is very closely related with the systematic improvement of the field dependence of the critical current densities (Jc) of MgB2 tapes while the values of Jc decreased. According to the analysis of the pinning force density (Fp), there exist two pinning sources both in the pure MgB2 and in the MgB2 film with the thinnest SiC buffer layer. On the while, the pinning source observed in the MgB2 films with thicker SiC buffer layers appears to be different from those previously mentioned. The different pinning behaviors of MgB2 films may suggest that there be an additional pinning center working on the MgB2 films with thick SiC buffer layers. The microstructural analyses of MgB2 films confirmed that intra-granular defects and columnar grain boundaries may be a dominant pinning mechanism in the pure MgB2 and the MgB2 film with 170 nm-thick SiC buffer layer. For the MgB2 films with thicker SiC buffer layers, carbon diffusion into the MgB2 film, which is defined by the Auger electron spectroscopy, may be the origin of the additional pinning mechanism.  相似文献   

7.
We studied the flux pinning properties by grain boundaries in MgB2 films prepared by using a hybrid physical chemical vapor deposition method on the c-axis oriented sapphire substrates. All the films we report here had the columnar grains with the growth direction perpendicular to the substrates and the grain sizes in the range of a few hundred nanometers. At very low magnetic fields, no discernable grain-boundary (GB) pinning effect was observed in all measuring temperatures, but above those fields, the effect of GB flux pinning was observed as enhanced critical current densities (Jcs) and reduced resistances when an external magnetic field (B) was aligned parallel to the c-axis. We interpret the B dependence of Jc in the terms of flux line lattice shear inside the columnar grains activated by dislocations of Frank–Read source while the flux lines pinned by GB act as anchors for dislocations. Magnetic field dependence of flux pinning force density for B parallel to the c-axis was reasonably explained by the above model.  相似文献   

8.
We investigated the influence of surface damage on the critical current density (Jc) of MgB2 thin films via 140-keV Co-ion irradiation. The Jc(H) of the surface-damaged MgB2 films was remarkably improved in comparison with that of pristine films. The strong enhancement of Jc(H) caused by a surface damage in MgB2 films can be ascribed to additional point defects along with an atomic lattice displacement introduced through low-energy Co-ion irradiation, which is consistent with the change in the pinning mechanism, from weak collective pinning to strong plastic pinning. The irreversible magnetic field (Hirr) at 5 K for surface-damaged MgB2 films with a thickness of 850 and 1300 nm was increased by a factor of approximately 2 compared with that of a pristine film. These results show that the surface damage produced by low energy ion irradiation can serve as an effective pinning source to improve Jc(H) in a MgB2 superconductor.  相似文献   

9.
In this study, the magnetization measurements have been performed on high-temperature superconductor's single crystals YBa2Cu3O7-δ at large ranges of temperature T (15-85 K) and in magnetic fields up to 6T at different values of the angle θ between the applied magnetic field and c-axis. The critical current density Jc deduced from the magnetic hysteresis loops by the Bean formula for H parallel to the c-axis (θ=0°), our results have shown that the critical current density Jc was strongly dependent on the applied magnetic field. The pinning force Fp=Jc×μ0H was determined from magnetization for H//c, however, a plot of the normalized pinning force density fp= Fp/Fpmax as a function of the reduced magnetic field h= H/Hirr at different temperatures have shown good scaling with the form fp ~hp(1-h)q, where p and q are scaling parameters. We also found that the point pinning is more dominant than surface pinning under high temperatures.  相似文献   

10.
To investigate the existence of a splay effect in Bi2Sr2CaCu2O8 (Bi-2212), vortex pinning has been studied in different configurations of strongly inclined columnar defects (75 from the c axis), installed by heavy-ion irradiation. It is shown that the symmetry of the track setting with respect to the field direction is a more influent parameter than the presence of a dispersion in the track directions. We claim that the enhanced pinning efficiency which is observed in some splayed configurations of columnar defects in Bi-2212 can be interpreted without invoking a splay effect. Received 27 December 1999  相似文献   

11.
The effect of treatment at a temperature of 200°C and the natural aging on the critical parameters of a highly textured yttrium barium cuprate YBa2Cu3O6.9 has been investigated. It has been shown that non-superconducting (at T = 77 K) particles precipitated during phase decomposition of this compound are effective pinning centers. At 200°C, the YBa2Cu3O y compound interacts with atmospheric moisture. This inter-action results in the formation of stacking faults, which also provide pinning of magnetic vortices. The structural changes occurring during low-temperature annealing and natural aging of the compound lead to an increase in the critical current density and the first critical field. The presence of pinning centers of different nature in the structure causes a synergistic effect, which significantly increases the current-carrying capacity of materials, including those in strong magnetic fields.  相似文献   

12.
A three-directional configuration of columnar defects has been induced in a Bi2Sr2CaCu2O8 single crystal by irradiation with heavy ions of high energy. Persistent current densities have been extracted, using the Bean model, from hysteresis loops recorded in the orientation H||c. We have shown that improvements in pinning properties are larger in this three-directional splayed configuration than in the one obtained with columnar defects parallel to the c-axis. This effect exists only for H larger than HΦ, where HΦ is the matching field, and disappears as temperature is increased and vortices become less stiff. This is the first time that such a beneficial effect is reported for a compound of such a high electronic anisotropy.  相似文献   

13.
We investigated the dependences of the critical current density Jc on the magnetic field angle θ in YBa2Cu3O7−δ thin films with the crossed configurations of the columnar defects (CDs). To install the crossed CDs, the films were irradiated using the high energetic Xe ions at two angles relative to the c-axis. The additional peak around the c-axis appears in the Jc(θ) for all irradiated films. In lower magnetic fields, the height of the Jc(θ) peak caused by the crossed CDs with the crossing angles θi = ±10° was higher than that for the parallel CDs. It is considered that the correlation of the flux pinning by the crossed CDs along the c-axis occurs even in the case of θi = ±25°, which was also suggested by the kink behaviors of the scaling parameters of the current–voltage characteristics near 1/3 of the matching field. In higher magnetic fields, on the other hand, the height and width of the Jc(θ) peak for the crossed CD configurations rapidly reduce with increasing the magnetic field compared to the parallel ones. In the crossed CD configurations, the dispersion in the direction of CDs would prevent the correlation of flux pinning along the c-axis in high magnetic fields, which occurs in the parallel CD configurations due to the collective pinning of flux lines including the interstitial flux lines between the directly pinned flux lines by CDs.  相似文献   

14.
We observe vortex pinning in 2.2 GeV Au-ion irradiated NbSe2 by scanning tunneling microscopy (STM) at 3K. The ion irradiation generates columnar defects which act as pinning sites. At various external magnetic fields the vortex arrangement is clearly resolved but shows strong distortion. The location of individual defects is extracted from STM data and compared to the vortex arrangement.  相似文献   

15.
We report the formation of columnar defects in Co-doped BaFe2As2 single crystals with different heavy-ion irradiations. The formation of columnar defects by 200 MeV Au ion irradiation is confirmed by transmission electron microscopy and their density is about 40% of the irradiation dose. Magneto-optical imaging and bulk magnetization measurements reveal that the critical current density Jc is enhanced in the 200 MeV Au and 800 MeV Xe ion irradiated samples while Jc is unchanged in the 200 MeV Ni ion irradiated sample. We also find that vortex creep rates are strongly suppressed by the columnar defects. We compare the effect of heavy-ion irradiation into Co-doped BaFe2As2 and cuprate superconductors.  相似文献   

16.
We have investigated the superconducting properties of Ag/YBa2Cu3O7−x thick multilayers grown by Pulsed Laser Deposition, and found that the artificial pinning centres induced by Ag nanodots lead to a significant increase in critical current, especially in high applied magnetic fields. Transmission Electron Microscopy showed a columnar growth of YBa2Cu3O7−x induced by Ag nanodots, while angle-dependent transport measurements revealed the existence of strong, both isotropic and c-axis correlated, artificial pinning centres.  相似文献   

17.
The effect of incorporation of BaTiO3(BTO) nanoparticles on the flux pinning properties of pulsed laser deposited YBCO:BTO thin films was studied. Substantial increase in the critical current density (JC) and the pinning force density (Fp) of the nanocomposite thin films was observed. At 77 K, and zero applied magnetic field, the value of JC for YBCO and YBCO:BTO (2%) thin films were 2.93 MA/cm2 and 6.43 MA/cm2, respectively. At the same temperature and an applied magnetic field of 4 T, the value of JC increases from 3.6×104 A/cm2 for YBCO thin film to 2.7×105 A/cm2 for YBCO:BTO (2%) nanocomposite thin film. The study of temperature and field dependence of of YBCO and YBCO:BTO thin films indicates similar type of pinning. The lattice mismatch between YBCO and BTO seems to introduce more defects resulting in the improvement of flux pinning properties.  相似文献   

18.
Critical current density was measured for oxygen-controlled (Bi, Pb)-2223 single crystals before and after the irradiation with gold ions in a magnetic field parallel to the irradiation-induced defects along the c-axis. Eleven specimens prepared in different annealing conditions were measured. The condensation energy density of each specimen was evaluated from the observed critical current density by using the summation theory of pinning forces of columnar defects and the flux creep theory. It was found that the specimen heat-treated at 1 atm in oxygen atmosphere has the highest condensation energy density among all specimens. Hence, it is speculated that the optimum oxygen pressure for the anneal is around 1 atm.  相似文献   

19.
Deviation from a homogeneous distribution of the vortex line lattice and magnetic field induced by transport current near Hc2 in the cylindrical sample of type II superconductor in the mixed state without pinning is determined. The dependence of the critical current density on the position in the sample is calculated.  相似文献   

20.
YBa2Cu3O7?δ thin films with BaZrO3 (BZO) inclusions have been deposited on SrTiO3 substrates in order to study the effect of nanoparticles addition into YBCO matrix. Samples with 7% (mol) BZO content were obtained by PLD varying the deposition conditions, in order to evaluate their effect on the films transport properties. The change in deposition parameters, especially of the deposition temperature, has been discovered to be efficient for a reduction or complete recovery of the critical temperature decrease produced by BZO addition. The effect of the deposition temperature on in-field films transport properties as well as on the presence of c-axis correlated defects typically ascribable to nanoparticles addition, can be recognised in an improvement in JC retention in applied magnetic field and, for higher temperatures, the appearance of correlated pinning contribution, as confirmed by pinning force density measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号