首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new 1,3,4‐oxadiazole‐containing bispyridyl ligand, namely 5‐(pyridin‐4‐yl)‐3‐[2‐(pyridin‐4‐yl)ethyl]‐1,3,4‐oxadiazole‐2(3H)‐thione (L), has been used to create the novel complexes tetranitratobis{μ‐5‐(pyridin‐4‐yl)‐3‐[2‐(pyridin‐4‐yl)ethyl]‐1,3,4‐oxadiazole‐2(3H)‐thione}zinc(II), [Zn2(NO3)4(C14H12N4OS)2], (I), and catena‐poly[[[dinitratocopper(II)]‐bis{μ‐5‐(pyridin‐4‐yl)‐3‐[2‐(pyridin‐4‐yl)ethyl]‐1,3,4‐oxadiazole‐2(3H)‐thione}] nitrate acetonitrile sesquisolvate dichloromethane sesquisolvate], {[Cu(NO3)(C14H12N4OS)2]NO3·1.5CH3CN·1.5CH2Cl2}n, (II). Compound (I) presents a distorted rectangular centrosymmetric Zn2L2 ring (dimensions 9.56 × 7.06 Å), where each ZnII centre lies in a {ZnN2O4} coordination environment. These binuclear zinc metallocycles are linked into a two‐dimensional network through nonclassical C—H...O hydrogen bonds. The resulting sheets lie parallel to the ac plane. Compound (II), which crystallizes as a nonmerohedral twin, is a coordination polymer with double chains of CuII centres linked by bridging L ligands, propagating parallel to the crystallographic a axis. The CuII centres adopt a distorted square‐pyramidal CuN4O coordination environment with apical O atoms. The chains in (II) are interlinked via two kinds of π–π stacking interactions along [01]. In addition, the structure of (II) contains channels parallel to the crystallographic a direction. The guest components in these channels consist of dichloromethane and acetonitrile solvent molecules and uncoordinated nitrate anions.  相似文献   

2.
The dipharmacophore compound 3‐cyclopropyl‐5‐(3‐methyl‐[1,2,4]triazolo[4,3‐a]pyridin‐7‐yl)‐1,2,4‐oxadiazole, C12H11N5O, was studied on the assumption of its potential biological activity. Two polymorphic forms differ in both their molecular and crystal structures. The monoclinic polymorphic form was crystallized from more volatile solvents and contains a conformer with a higher relative energy. The basic molecule forms an abundance of interactions with relatively close energies. The orthorhombic polymorph was crystallized very slowly from isoamyl alcohol and contains a conformer with a much lower energy. The basic molecule forms two strong interactions and a large number of weak interactions. Stacking interactions of the `head‐to‐head' type in the monoclinic structure and of the `head‐to‐tail' type in the orthorhombic structure proved to be the strongest and form stacked columns in the two polymorphs. The main structural motif of the monoclinic structure is a double column where two stacked columns interact through weak C—H…N hydrogen bonds and dispersive interactions. In the orthorhombic structure, a single stacked column is the main structural motif. Periodic calculations confirmed that the orthorhombic structure obtained by slow evaporation has a lower lattice energy (0.97 kcal mol?1) compared to the monoclinic structure.  相似文献   

3.
A new series of isoxazole substituted fused triazolo‐thiadiazoles have been synthesized by the cyclocondensation of 5‐methylisoxazole‐3‐craboxylic acid and 4‐amino 1,2‐4‐triazole‐ 3,5‐dithiol using phosphorous oxychloride. The cyclised intermediate 6‐(5‐methylisoxazol‐3‐yl)‐[1,2,4]triazolo[3,4‐b][1,3,4]thiadiazole‐3‐thiol later on S‐alkylated with different alkyl halides in ethanol to give the title products in good to excellent yields.  相似文献   

4.
The title compound, C21H24FN2O2+·Cl·C3H8O, is a potential drug designed as a hybrid compound with antihypertensive, antioxidant and β‐adrenolytic activity. The cation contains nearly planar benzo­furan and fluoro­phenyl ring systems, as well as a piperazine ring adopting an almost perfect chair conformation. The benzo­furan and piperazine moieties are connected by an ethyl chain, the moieties forming a dihedral angle of 163.12 (13)°. In the crystal structure, ions and propanol solvent mol­ecules are linked via N—H⋯Cl and O—H⋯Cl bonds into linear (010) chains.  相似文献   

5.
The paper describes synthesis and antituberculosis activity of α‐[5‐(5‐amino‐1,3,4‐thiadiazol‐2‐yl)‐imidazol‐2‐ylthio]acetic acids ( 5a,b ). The compounds were tested against Mycobacterium tuberculosis strain H37Rv in comparison to rifampicin. Compounds exhibited low activity (MIC ≤ 6.25 μg/ml, % inhibition ≥ 24).  相似文献   

6.
A novel series of coumarin substituted triazolo‐thiadiazine derivatives were designed and synthesized by using 5‐methyl isoxazole‐3‐carboxylic acid ( 1 ), thiocarbohydrazide ( 2 ), and various substituted 3‐(2‐bromo acetyl) coumarins ( 4a , 4b , 4c , 4e , 4d , 4f , 4g , 4h , 4i , 4j ). Fusion of 5‐methyl isoxazole‐3‐carboxylic acid with thiocarbohydrazide resulted in the formation of the intermediate 4‐amino‐5‐(5‐methylisoxazol‐3‐yl)‐4H‐1,2,4‐triazole‐3‐thiol ( 3 ). This intermediate on further reaction with substituted 3‐(2‐bromo acetyl) coumarins under simple reaction conditions formed the title products 3‐(3‐(5‐methylisoxazol‐3‐yl)‐7H‐[1,2,4]triazolo[3,4‐b][1,3,4]thiadiazin‐6‐yl‐2H‐chromen‐2‐ones ( 5a , 5b , 5c , 5d , 5e , 5f , 5g , 5h , 5i , 5j ) in good to excellent yields. All the synthesized compounds were well characterized by physical, analytical, and spectroscopic techniques.  相似文献   

7.
The synthesis of 3‐[5‐(4‐chlorophenyl)‐1‐(4‐methoxyphenyl)‐1H‐pyrazol‐3‐yl]propionic acid, C19H17ClN2O3, (I), and its corresponding methyl ester, methyl 3‐[5‐(4‐chlorophenyl)‐1‐(4‐methoxyphenyl)‐1H‐pyrazol‐3‐yl]propionate, C20H19ClN2O3, (II), is regiospecific. However, correct identification of the regioisomer formed by spectroscopic techniques is not trivial and single‐crystal X‐ray analysis provided the only means of unambiguous structure determination. Compound (I) crystallizes with Z′ = 2. The propionic acid groups of the two crystallographically unique molecules form a hydrogen‐bonded dimer, as is typical of carboxylic acid groups in the solid state. Conformational differences between the methoxybenzene and pyrazole rings give rise to two unique molecules. The structure of (II) features just one molecule in the asymmetric unit and the crystal packing makes greater use than (I) of weak C—H...A interactions, despite the lack of any functional groups for classical hydrogen bonding.  相似文献   

8.
The dipharmacophore compound 3‐cyclopropyl‐5‐(2‐hydrazinylpyridin‐3‐yl)‐1,2,4‐oxadiazole, C10H11N5O, was studied on the assumption of its potential biological activity. Two concomitant polymorphs were obtained on crystallization from isopropanol solution and these were thoroughly studied. Identical conformations of the molecules are found in both structures despite the low difference in energy between the four possible conformers. The two polymorphs differ crucially with respect to their crystal structures. A centrosymmetric dimer formed due to both stacking interactions of the `head‐to‐tail' type and N—H…N(π) hydrogen bonds is the building unit in the triclinic structure. The dimeric building units form an isotropic packing. In the orthorhombic polymorphic structure, the molecules form stacking interactions of the `head‐to‐head' type, which results in their organization in a column as the primary basic structural motif. The formation of N—H…N(lone pair) hydrogen bonds between two neighbouring columns allows the formation of a double column as the main structural motif. The correct packing motifs in the two polymorphs could not be identified without calculations of the pairwise interaction energies. The triclinic structure has a higher density and a lower (by 0.60 kcal mol?1) lattice energy according to periodic calculations compared to the orthorhombic structure. This allows us to presume that the triclinic form of 3‐cyclopropyl‐5‐(2‐hydrazinylpyridin‐3‐yl)‐1,2,4‐oxadiazole is the more stable.  相似文献   

9.
The title compound, C19H13N5O2, crystallizes in two monoclinic forms depending on the solvent used. From methanol or acetone, a yellow form [(Ia), m.p. 533 K] in the space group P21 is obtained, while with ethanol as the solvent, an orange form [(Ib), m.p. 541 K] in the space group Cc results. The conformers observed in the two polymorphs differ primarily in the relative orientation of pyridine/phenyl and triazole rings. Molecules of both polymorphs form chains through carboxyl O—H...N hydrogen bonding; however, in each crystal structure, a different group acts as acceptor, viz. a triazole and a pyridyl N atom for (Ia) and (Ib), respectively. This is the first case of polymorphism observed for crystals of a 3,4,5‐trisubstituted 1,2,4‐triazole derivative.  相似文献   

10.
A series of substituted N‐(4‐substituted‐benzoyl)‐N‐[3‐(1‐methyl‐1H‐imidazol‐2‐yl)propyl]amines ( 13 ) and N‐arylsulfonyl‐N‐[3‐(1‐methyl‐1H‐imidazol‐2‐yl)propyl]amines ( 14 ) were prepared from the reaction of 3‐(1‐methyl‐1H‐imidazol‐2‐yl)propan‐1‐amine ( 7 ) with substituted benzoyl chloride or substituted‐benzene sulfonyl chloride respectively. Compound 7 was prepared by two independent methods.  相似文献   

11.
In the present investigation, a novel series of 3‐(4‐(2‐substituted thiazol‐4‐yl)phenyl)‐2‐(4‐methyl‐2‐substituted thiazol‐5‐yl)thiazolidin‐4‐one derivatives were synthesized by condensation of 2‐substituted‐4‐methylthiazole‐5‐carbaldehyde with 4‐(2‐substituted thiazol‐4‐yl)benzenamine followed by cyclo‐condensation with thioglycolic acid in toluene. All the newly synthesized compounds were characterized by spectral (IR, 1H NMR, 13C NMR, and Mass) methods. The title compounds were screened for quantitative antibacterial activity (minimal inhibitory concentration). All compounds 7a , 7b , 7c , 7d , 7e , 7f , 7g , 7h and 8a , 8b , 8c , 8d , 8e , 8f , 8g , 8h show moderate to good antimicrobial activity, whereas compounds ( 7a , 7b , 7c , 7d , 7e , 7f , 7g , 7h ) also show moderate antifungal activity.  相似文献   

12.
13.
The molecules of the title compound, C17H21N3OS, are characterized by a wide C—C—C angle at the methine C atom linking the aryl and thiazolidine rings, associated with a short repulsive intramolecular S...H contact between atoms in these two rings. A single piperidine–arene C—H...π hydrogen bond links pairs of molecules into centrosymmetric dimers.  相似文献   

14.
In the title compounds, C11H18N2, (II), and C13H20N2O, (III), the pyrrolidine rings have twist conformations. Compound (II) crystallizes with two independent molecules (A and B) in the asymmetric unit. The mean planes of the pyrrole and pyrrolidine rings are inclined to one another by 89.99 (11) and 89.35 (10)° in molecules A and B, respectively. In (III), the amide derivative of (II), the same dihedral angle is much smaller, at only 13.42 (10)°. In the crystal structure of (II), the individual molecules are linked via N—H...N hydrogen bonds to form inversion dimers, each with an R22(12) graph‐set motif. In the crystal structure of (III), the molecules are linked via N—H...O hydrogen bonds to form inversion dimers with an R22(16) graph‐set motif.  相似文献   

15.
The Schiff bases 3a‐h obtained from 4‐amino‐1,2,4‐triazol‐3‐ones 1a‐h when subjected to Japp‐Klingemann reaction yielded the corresponding 3‐{2‐[(2‐aryl‐5‐methyl‐3H‐[1,2,4]‐triazol‐3‐one‐4‐yl)]‐iminophenyl}‐pentane‐2,4‐diones 4a‐h . These diones on cyclisation with N2H4 yielded the title compounds 5a‐h . The energetics of the Keto‐enol tautomers of the diones was calculated by semiemperical calculations using AM1 and PM3 methods. All these compounds were screened for their antimicrobial activity against few microbes and most of them exhibited fungal inhibition more than the reference drugs used.  相似文献   

16.
The title compound, C28H27N3O4S, crystallizes in the centrosymmetric space group P21/n, with one mol­ecule in the asymmetric unit. In the indole ring, the dihedral angle between the fused rings is 3.6 (1)°. The phenyl ring of the sulfonyl substituent makes a dihedral angle of 79.2 (1)° with the best plane of the indole moiety. The phenyl ring of the di­methyl­amino­phenyl group is orthogonal to the phenyl ring of the phenyl­sulfonyl group. The dihedral angle formed by the weighted least‐squares planes through the pyrrole ring and the phenyl ring of the di­methyl­amino­phenyl group is 7.8 (1)°. The molecular structure is stabilized by C—H?O and C—H?N interactions.  相似文献   

17.
Both title compounds are derivatives of salicylic acid. 5‐Formylsalicylic acid (systematic name: 5‐formyl‐2‐hydroxybenzoic acid), C8H6O4, possesses three good hydrogen‐bond donors and/or acceptors coplanar with their attached benzene ring and abides very well by Etter's hydrogen‐bond rules. Intermolecular O—H...O and some weak C—H...O hydrogen bonds link the molecules into a planar sheet. Reaction of this acid and o‐phenylenediamine in refluxing ethanol produced in high yield the new zwitterionic compound 5‐(benzimidazolium‐2‐yl)salicylate [systematic name: 5‐(1H‐benzimidazol‐3‐ium‐2‐yl)‐2‐hydroxybenzoate], C14H10N2O3. Each imidazolium N—H group and its adjacent salicyl C—H group chelate one carboxylate O atom via hydrogen bonds, forming seven‐membered rings. As a result of steric hindrance, the planes of the molecules within these pairs of hydrogen‐bonded molecules are inclined to one another by ∼74°. There are also π–π stacking interactions between the parallel planes of the imidazole ring and the benzene ring of the salicyl component of the adjacent molecule on one side and the benzimidazolium component of the molecule on the other side.  相似文献   

18.
On the base of synthesized 2‐amino and 2‐ethylamino‐(2‐thioxo‐3‐alkyl‐4‐methyl‐3H‐thiazol‐5‐yl)‐[1,3,4]thiadiazoles, their alkyl, acetyl, and alkylacetylamino derivatives are obtained. The alkylation of 2‐ethylamino derivatives can occur at both exo and endo nitrogen atoms of amidine group, and the acetylation takes place exclusively at the exocyclic nitrogen atom. At acetylation of 2‐amino‐[1,3,4]thiadiazoles, only exo substitution is observed. At the further alkylation of these products, a mixture of exo‐ and endo‐substituted forms is obtained. At preliminary screening, the synthesized compounds have shown expressed growth stimulant properties. The activity of the most active derivatives was in the range of 65–100%, compared with that of heteroauxin.  相似文献   

19.
This study of 3‐(5‐phenyl‐1,3,4‐oxadiazol‐2‐yl)‐2H‐chromen‐2‐one, C17H10N2O3, 1 , and 3‐[5‐(pyridin‐4‐yl)‐1,3,4‐oxadiazol‐2‐yl]‐2H‐chromen‐2‐one, C16H9N3O3, 2 , was performed on the assumption of the potential anticancer activity of the compounds. Three polymorphic structures for 1 and two polymorphic structures for 2 have been studied thoroughly. The strongest intermolecular interaction is stacking of the `head‐to‐head' type in all the studied crystals. The polymorphic structures of 1 differ with respect to the intermolecular interactions between stacked columns. Two of the polymorphs have a columnar or double columnar type of crystal organization, while the third polymorphic structure can be classified as columnar‐layered. The difference between the two structures of 2 is less pronounced. Both crystals can be considered as having very similar arrangements of neighbouring columns. The formation of polymorphic modifications is caused by a subtle balance of very weak intermolecular interactions and packing differences can be identified only using an analysis based on a study of the pairwise interaction energies.  相似文献   

20.
The title compound, N′‐benzylidene‐N‐[4‐(3‐methyl‐3‐phenyl‐cyclobutyl)‐thiazol‐2‐yl]‐chloro‐acetic acid hydrazide, has been synthesized and characterized by elemental analysis, IR, 1H and 13C NMR, and X‐ray single crystal diffraction. The compound crystallizes in the orthorhombic space group P 21 21 21 with a = 5.8671 (3) Å, b = 17.7182 (9) Å, and c = 20.6373 (8) Å. Moreover, the molecular geometry from X‐ray experiment, the molecular geometry, vibrational frequencies, and gauge‐including atomic orbital 1H and 13C chemical shift values of the title compound in the ground state have been calculated by using the Hartree–Fock and density functional methods (B3LYP) with 6‐31G(d) and 6‐31G(d,p) basis sets. The results of the optimized molecular structure are exhibited and compared with the experimental X‐ray diffraction. Besides, molecular electrostatic potential, Frontier molecular orbitals, and thermodynamic properties of the title compound were determined at B3LYP/6‐31G(d) levels of theory. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号