共查询到20条相似文献,搜索用时 13 毫秒
1.
Zhong Zhi You Gu Jin Hua Yang Chun Yong Hou Jin 《Crystal Research and Technology》2012,47(10):1039-1046
The Al‐doped zinc oxide (ZnO:Al) thin films were grown on glass substrates by the magnetron sputtering technique. The films were characterized with X‐ray diffractometer, four‐point probe and optical transmission spectroscopy, respectively. The dependence of microstructural, electrical and optical properties on deposition temperature was investigated. The results show that all the films have hexagonal wurtzite structure with highly c‐axis orientation. And the microstrural and optoelectrical properties of the films are observed to be subjected to the deposition temperature. The ZnO:Al film prepared at the deposition temperature of 650 K possesses the best optoelectrical properties, with the lowest electrical resistivity (6.1×10−4 Ω·cm), the highest average visible transmittance (85.3%) and the maximum figure of merit (0.41 Ω−1). The optical energy gap of the films was estimated from Tauc's law and observed to be an increasing tendency with the increment of the deposition temperature. Furthermore, the refractive index of the films was determined by the optical characterization methods and the dispersion behavior was studied by the single electronic oscillator model. 相似文献
2.
The mechanism of ultraviolet (UV), violet and blue green emission from ZnO:Al (AZO) thin films deposited at different radio frequency (r.f.) powers on glass substrates was investigated. The structure and surface morphology of AZO films have also been observed. The optical transmittance spectra shows more than 80% transmittance in the visible region and the band gap is found to be directly allowed. From the photoluminescence measurement, intense UV and blue green luminescence is obtained for the samples deposited at higher sputtering powers. The mechanism of luminescence suggests that UV luminescence of AZO thin film is related to the transition from near band edge to the valence band and the concentration of antisite oxide (Ozn) increases with increase in r.f. power which in turn increases the intensity of green band emission while the violet PL is due to the defect level transition in the grain boundaries of AZO films. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
3.
孪生对靶直流磁控溅射制备ZnO:Al薄膜及其特性研究 总被引:3,自引:1,他引:3
本文以ZnO:A l(ZAO)陶瓷为靶材,采用孪生对靶直流磁控溅射工艺在玻璃衬底上制备出高质量的铝掺杂氧化锌透明导电膜,研究了该薄膜的结构、光电及力学特性。采用孪生对靶制备ZAO薄膜可使样品避开等离子体直接轰击,减少基底薄膜的损伤。制备的薄膜具有结晶程度高、电阻率低、迁移率高等优点。ZAO薄膜的最低电阻率达到了4.47×10-4Ω.cm,在可见光区的平均透过率达到85%以上,非常适合做为铜铟硒(C IS)薄膜太阳电池窗口层。 相似文献
4.
5.
本文研究了薄膜厚度对MOCVD技术制备未掺杂ZnO薄膜的微观结构和电学特性影响.XRD和SEM的研究结果表明,随着薄膜厚度的增加,ZnO薄膜(110)峰趋于择优取向,且晶粒逐渐长大,薄膜从球状和细长棒状演变为具有类金字塔绒面结构特征的ZnO薄膜;Hall测量表明,较厚的ZnO薄膜有助于提高薄膜电学特性,可归于晶粒长大和晶体质量提高.40min沉积时间(膜厚为1250nm)制备出的ZnO薄膜具有明显绒面结构,其晶粒尺寸为300~500nm,电阻率为7.9×10-3Ω·cm,迁移率为26.8cm2/Vs. 相似文献
6.
Aluminum‐doped zinc oxide (AZO) thin films were deposited on sapphire (002) and glass substrates by two different sputtering techniques radio frequency magnetron cosputtering of AZO and ZnO targets and sputtering of an AZO target. The dependence of the photoluminescence (PL) and transmittance properties of the AZO films deposited by cosputtering and sputtering on the AZO/ZnO target power ratio, R and the O2/Ar flow ratio, r were investigated, respectively. Only a deep level emission peak appears in the PL spectra of cosputtered AZO films whereas both UV emission and deep level emission peaks are observed in the PL spectra of sputtered AZO films. The absorption edges in the transmittance spectra of the AZO films shift to the lower wavelength region as R and r increase. Also effects of crystallinity, surface roughness, PL on the transmittance of the AZO films were explained using the X‐ray diffraction (XRD), atomic force microscopy (AFM), and PL analysis results. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
7.
N. Gopalakrishnan L. Balakrishnan K. Latha S. Gowrishankar 《Crystal Research and Technology》2011,46(4):361-367
Transparent Zinc Oxide (ZnO) thin films have been grown on Si (100) and Sapphire (0001) substrates by RF magnetron sputtering for different growth time intervals (10, 30 and 60 min) to study the substrate and thickness effects. All the films have been grown at a substrate temperature of 450 °C. It has been found that the average growth rate on Si (100) substrate (8.6 nm/min) is higher than that on Sapphire (0001) substrate (2.6 nm/min) in an identical growth condition which clearly shows the virtual role of substrates. The lower growth rate on Sapphire (0001) suggests that the increasingly ordered and uniform growth due to less lattice mismatch. The grown films have been characterized by X‐ray diffraction (XRD), Reflectance, Photoluminescence (PL) and Hall measurements. The XRD result (FWHM) reveals that for lower growth time, the films grown on Si (100) is better than on Sapphire (0001). Conversely, for higher growth time, the films grown on Sapphire (0001) is better than on Si (100). The variation of strain behavior due to thickness on both substrates has been justified by UV‐Vis reflectance, photoluminescence and Hall effect measurements. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
8.
C. Viswanathan V. Senthilkumar R. Sriranjini D. Mangalaraj Sa. K. Narayandass Junsin Yi 《Crystal Research and Technology》2005,40(7):658-664
Thin films of InSe were obtained by thermal evaporation techniques on glass substrates maintained at various temperatures (Tsb = 30°, 400°C). X‐ray diffraction analysis showed the occurrence of amorphous to polycrystalline transformation in the films deposited at higher substrate temperature (400°C). The polycrystalline films were found to have a hexagonal lattice. Compositions of these films have been characterized by EDAX and the surface analysis by scanning electron microscopy. Optical properties of the films, investigated by using spectrophotometer transmittance spectra in the wavelength range (300 – 1100 nm), were explained in terms of substrate temperatures. Films formed at room temperature showed an optical band gap (Egopt) 1.56 eV; where as the films formed at 400°C were found to have a Egopt of 1.92 eV. The increase in the value of Egopt with Tsb treatment is interpreted in terms of the density of states model as proposed by Mott and Davis. The analysis of current ‐Voltage characteristics, based on space charge limited currents (SCLC) measurements, confirms the exponential decrease of density of states from the conduction band edge towards the Fermi level for both the amorphous and polycrystalline films. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
9.
ZnTe thin films were deposited onto well‐cleaned glass substrates kept at different temperatures (Ts = 303, 373 and 423 K), by vacuum evaporation method under the pressure of 10–5 Torr. The thickness of the film was measured by quartz crystal monitor and verified by the multiple beam interferometer method. The structural characterization was made using X‐ray diffractometer with filtered CuKα radiation. The grain sizes of the microcrystallines in films increases with increase in substrate temperature. The strain (ε), grain size (D) and dislocation density (δ) was calculated and results are discussed based on substrate temperature. Optical behaviour of the film was analyzed from transmittance spectra in the visible region (400–800 nm). The optical transition in ZnTe films is direct and allowed type. The optical band gap energy shows an inverse dependence on substrate temperature and thickness. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
10.
采用低压化学气相沉积(LPCVD)技术在大面积的玻璃衬底上制备了B掺杂ZnO(BZO)透明导电薄膜,研究了不同B2H6掺杂量对BZO薄膜微观形貌、导电能力及其均匀性、透光率等性能的影响.结果表明,所制备的BZO薄膜表面具有自生长的绒面结构;B2H6掺杂量由30 sccm增加到60 sccm,BZO薄膜的方阻由28.6Ω/□减小到14.1 Ω/□,导电能力显著增强,同时方阻均匀性也明显提升;BZO薄膜在长波区的透光率随B2H6掺杂量的增加而明显降低,综合透光率结果,最佳B2H6掺杂量控制在60~ 90 sccm之间. 相似文献
11.
12.
膜厚对Zr,Al共掺杂ZnO透明导电薄膜结构和光电性能的影响 总被引:1,自引:0,他引:1
采用直流磁控溅射法在玻璃衬底上制备出Zr,Al共掺杂ZnO(AZZO)透明导电薄膜.用XRD和SEM分析和观察了薄膜样品的组织结构和表面形貌.研究表明:制备的AZZO透明导电薄膜为六角纤锌矿结构的多晶薄膜,且具有c轴择优取向.另外还研究了薄膜的结构、光学和电学性质随薄膜厚度的变化关系.当薄膜厚度为843 nm时,电阻率具有最小值1.18×10~(-3) Ω·cm,在可见光区(500~800 nm)平均透过率超过93;. 相似文献
13.
We have studied the effect of subsequent gamma (γ) irradiation on the absorption spectra and the optical energy gap of ZnO thin films doped with Li (ZnO:Li). The optical transmission (T) and optical reflection (R) in the wavelength range 190∼800 nm of films deposited at 300 °C on sapphire, MgO or quartz substrates were measured. The dependence of the absorption coefficient α on photon energy hν was determined as a function of γ‐doses. The films show direct allowed interband transition that influenced by the gamma doses. Both the optical energy gap Eoptg and the absorption coefficient (α) were found to be γ‐dose dependent. The results can be discussed on the basis of γ‐irradiation‐induced defects in the film and on the film structure. The absorption coefficient exhibits exponential dependence on photon energy obeying Urbach's rule in the absorption edge. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
14.
采用稀盐酸对磁控溅射法制备的平面掺铝氧化锌(ZnO∶Al,AZO)薄膜表面进行湿法刻蚀制绒,分析了盐酸浓度和刻蚀时间对AZO薄膜表面的形貌特征和光电特性的影响。研究发现,湿法刻蚀导致AZO薄膜表面呈现大尺度的陨石坑形貌特征,随刻蚀时间增加,薄膜在大于500 nm的长波范围内光学透过率可维持在70%~75%,且800nm处雾度值可高达48%,陷光能力快速增加,而面电阻率呈现逐渐增加趋势。高的盐酸浓度可以导致薄膜表面呈现较快凹型形貌特征,并可给出较高的雾度值。为了在保持高雾度值的条件下改善薄膜导电性,在2%盐酸刻蚀30 s所制备绒面沉积300 nm AZO薄膜进行厚度补偿,所获得薄膜的表面方块电阻小于10Ω/sq,以其作为前电极所制成的单结薄膜电池转换效率达到9.24%。结果表明,采用酸性刻蚀+厚度补偿方法所制备的绒面AZO薄膜可兼顾高雾度和低电阻的性能要求,是用作硅基薄膜太阳电池前电极的理想材料。 相似文献
15.
N. Gopalakrishnan L. Balakrishnan A. Brindha G. Jayalakshmi 《Crystal Research and Technology》2012,47(1):45-52
The effect of film thickness and substrate orientation on ferromagnetism in Mn doped ZnO thin films have been studied. The Mn doped ZnO films of different thickness (15, 35 and 105 nm) have been grown on both Si (100) and Si (111) substrates. The structural, electrical, optical, elemental and magnetic properties of the films have been investigated by X‐ray diffraction (XRD), Hall Effect measurements, photoluminescence (PL), energy dispersive spectroscopy (EDS) and vibrating sample magnetometer (VSM), respectively. It is found that all the properties are strongly influenced by the film thickness and substrate orientation. The XRD analysis confirmed that the formation of high quality monophasic hexagonal wurtzite structure for all the grown films. The room temperature VSM measurements showed that the films of lower thickness have better ferromagnetism than that of the thicker films grown on both the substrates. Among the lower thickness films, the film grown on Si (111) substrate has higher saturation magnetization (291×10‐5 emu cm‐3) due to high density of the defects. The observed ferromagnetism has been well justified by XRD, Hall measurements and PL. The presence of Mn atoms in the film has been confirmed by EDS. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
16.
室温下,利用直流磁控溅射法在玻璃衬底上制备了铝铬共掺杂氧化锌薄膜,研究了溅射功率(55-130 W)对薄膜结构、残余应力、表面形貌及其光电性能的影响。结果表明,ZnO(002)衍射峰的强度随着溅射功率的增大而增强,晶体结构得以改善。晶格常数、压应力和电阻率均随着溅射功率的增大而减小。当溅射功率为130 W时,制备的ZnO∶Al,Cr薄膜的最低电阻率可达1.09×10-3Ω.cm。功率由55 W增大到130 W时,光学带隙由3.39 eV增大到3.45 eV。紫外-可见透射光谱表明,所有薄膜在可见光范围内平均透过率均超过89%。 相似文献
17.
Sookjoo Kim Jinho Jeon Hyoun Woo Kim Jae Gab Lee Chongmu Lee 《Crystal Research and Technology》2006,41(12):1194-1197
Effects of substrate temperature and atmosphere on the electrical and optical properties of Ga‐doped ZnO thin films deposited by rf magnetron sputtering were investigated. The electrical resistivity of Ga‐doped ZnO (GZO) films decreases as the substrate temperature increases from room temperature to 300°C. A minimum resistivity of 3.3 × 10–4 Ω cm is obtained at 300°C and then the resistivity increases with a further increase in the substrate temperature to 400°C. This change in resistivity with the substrate temperature is related to the crystallinity of the GZO film. The resistivity nearly does not change with the O2/Ar flow ratio, R for R < 0.25 but increases rapidly with R for R > 0.25. This change in resistivity with R is also related to crystallinity. The crystallinity is enhanced as R increases, but if the oxygen partial pressure is higher than a certain level (R = 0.25 ± 0.10) gallium oxides precipitate at grain boundaries, which decrease both carrier concentration and mobility. Optical transmittance increases as R increases for R < 0.75. This change in transmittance with R is related to changes in oxygen vacancy concentration and surface roughness with R. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
18.
Al2O3衬底上生长ZnO薄膜的结构和光学特性 总被引:4,自引:2,他引:2
用脉冲激光沉积法在Al2O3(0001)衬底上沉积了ZnO薄膜.衬底温度分别为300℃、400℃、500℃、600℃和700℃.利用X射线衍射(XRD)和光致发光谱(PL)对薄膜的结构和光学性能进行研究.X射线衍射的结果表明在不同温度下生长的ZnO薄膜均具有高度c轴择优取向,衬底温度400℃时,膜的应力较小质量较高.ZnO薄膜有很强的紫外发光峰,紫外发光峰的强度与衬底温度密切相关,并发现当衬底温度从300℃增到400℃时,紫外发射峰出现6nm的蓝移. 相似文献
19.
采用射频磁控溅射ZnO陶瓷靶、直流磁控溅射Cu靶的方法在不同基底温度下制备了ZnO/Cu/ZnO多层膜.用X射线衍射仪、原子力显微镜、紫外可见分光光度计和四探针测试仪对样品的性能进行了表征.结果表明,随着基底温度的升高,ZnO层c轴择优取向明显,结晶程度变好,Cu层的结晶性先变好后逐渐变差;多层膜表面均方根粗糙度随基底温度的升高而增加;光学透过率随基底温度的升高逐渐增大,基底温度为300 ℃时最大透过率接近90;;面电阻随基底温度的升高逐渐增加,最小面电阻为12.4 Ω/□. 相似文献
20.
N. Kumar V. Sharma N. Padha N. M. Shah M. S. Desai C. J. Panchal I. Yu. Protsenko 《Crystal Research and Technology》2010,45(1):53-58
Thin films of tin selenide (SnSe) were deposited on sodalime glass substrates, which were held at different temperatures in the range of 350‐550 K, from the pulverized compound material using thermal evaporation method. The effect of substrate temperature (Ts) on the structural, morphological, optical, and electrical properties of the films were investigated using x‐ray diffraction analysis (XRD), scanning electron microscopy (SEM), transmission measurements, and Hall‐effect characterization techniques. The temperature dependence of the resistance of the films was also studied in the temperature range of 80‐330 K. The XRD spectra and the SEM image analyses suggest that the polycrystalline thin films having uniform distribution of grains along the (111) diffraction plane was obtained at all Ts. With the increase of Ts the intensity of the diffraction peaks increased and well‐resolved peaks at 550 K, substrate temperature, were obtained. The analysis of the data of the optical transmission spectra suggests that the films had energy band gap in the range of 1.38‐1.18 eV. Hall‐effect measurements revealed the resistivity of films in the range 112‐20 Ω cm for films deposited at different Ts. The activation energy for films deposited at different Ts was in the range of 0.14 eV‐0.28 eV as derived from the analysis of the data of low‐temperature resistivity measurements. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献