首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The crystal structures of 3,3‐di­methyl‐3‐(tri­chloro­germyl)­propionic acid, [Ge(C5H9O2)Cl3], 3,3‐di­methyl‐3‐(tri­phenyl­germyl)­propionic acid, [Ge(C6H5)3(C5H9O2)], and 3,3‐di­methyl‐3‐(tri‐p‐toly­lgermyl)­propionic acid, [Ge(C7H7)3(C5H9O2)], have slightly distorted tetrahedral geometries about the Ge atoms. All the structures form dimers via strong O—H·O hydrogen bonds, resulting in eight‐membered rings that can be best described in terms of graph‐set notation (8).  相似文献   

2.
Melt‐processable liquid‐crystalline terpolyesters of 4‐hydroxyphenylacetic acid (HPAA) and 3‐(4‐hydroxyphenyl)propionic acid (HPPA) with terephthalic acid and 2,6‐naphthalene diol were synthesized by one‐step acidolysis melt polycondensation followed by postpolymerization and were characterized with viscosity studies, Fourier transform infrared (FTIR) and NMR spectroscopy, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), polarized light microscopy, and wide‐angle X‐ray diffraction. The melting behaviors and liquid‐crystalline transition temperatures of the terpolyesters were dependent on the composition of the HPAA/HPPA content. The transition temperatures of the polyesters could be effectively reduced by the introduction of an even number of built‐in short methylene spacers in combination with the 2,6‐naphthalene offset structure. A terpolyester with an HPPA content of 33% (NTP33) showed optimum properties for the glass‐transition temperature, around 71 °C, and the melting temperature, near 240 °C, with a Schlieren nematic texture. The polymer showed excellent flow behavior in a Brabender plasticorder. It was also thermally stable up to 400 °C. NTP33 showed 2.5% in vitro hydrolytic degradation in buffer solutions of pH 10 at 60 °C after 540 h. Considerable enzymatic degradation was also observed with porcine pancreas lipase/buffer solutions in comparison with Candida rugosa lipase after 60 days. The degradation was also followed with FTIR, DSC, and TGA. Apart from the temperature and pH of the buffer solution, several structural parameters, such as the aromatic content, crystallinity percentage, and composition of the polymer, affected the degradation behavior. FTIR studies indicated the involvement of chain scission during degradation. Scanning electron microscopy studies further showed that surface erosion also played a major role in the degradation. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1845–1857, 2002  相似文献   

3.
In contrast to Se[CH2C(O)OH]2versus S[CH2C(O)OH]2, the title compound, Se[CH2CH2C(O)OH]2 or C6H10O4Se, is structurally quite similar to its sulfur analogue. The mol­ecule has twofold symmetry. The C—Se—C bond angle is 96.48 (8)° and the Se—C bond lengths are 1.9610 (14) Å. The shortest Se?O intermolecular distance is 3.5410 (11) Å. The O?O distances in the carboxyl­ic acid dimers are 2.684 (2) Å. The temperature dependence of the IR spectrum suggests tautomerism in the solid state.  相似文献   

4.
The synthesis of 3‐[5‐(4‐chlorophenyl)‐1‐(4‐methoxyphenyl)‐1H‐pyrazol‐3‐yl]propionic acid, C19H17ClN2O3, (I), and its corresponding methyl ester, methyl 3‐[5‐(4‐chlorophenyl)‐1‐(4‐methoxyphenyl)‐1H‐pyrazol‐3‐yl]propionate, C20H19ClN2O3, (II), is regiospecific. However, correct identification of the regioisomer formed by spectroscopic techniques is not trivial and single‐crystal X‐ray analysis provided the only means of unambiguous structure determination. Compound (I) crystallizes with Z′ = 2. The propionic acid groups of the two crystallographically unique molecules form a hydrogen‐bonded dimer, as is typical of carboxylic acid groups in the solid state. Conformational differences between the methoxybenzene and pyrazole rings give rise to two unique molecules. The structure of (II) features just one molecule in the asymmetric unit and the crystal packing makes greater use than (I) of weak C—H...A interactions, despite the lack of any functional groups for classical hydrogen bonding.  相似文献   

5.
A new series of thermotropic liquid‐crystalline (LC) polyesters were prepared from a diacyl chloride derivative of 4,4′‐(terephthaloyldioxy)‐di‐4‐phenylpropionic acid (PTP) and glycols with a different number of methylene groups (n) [HO(CH2)n OH, n = 6–10, 12] by high‐temperature solution polycondensation in diphenyl oxide. PTP6/10 and PTP6/hydroquinone (H) LC copolyesters were also prepared according to a similar procedure. The chemical structure, LC, phase‐transition behaviors, thermal stability, and solubility were characterized by elemental analysis, Fourier transform infrared spectroscopy, 1H and 13C NMR spectra, differential scanning calorimetry (DSC), thermogravimetric analysis, and a polarizing light microscope. The melting and isotropization temperatures decreased in a zigzag manner as the number of n increased. All of the polyesters formed a nematic phase with the exception of PTP8. The temperature ranges of the mesophase (ΔT) were much wider for the polyesters with an odd number of n's than those with an even number. ΔT increased markedly for the PTP6/10 and PTP6/H copolyesters. The in vitro degradations of the polymers were ascertained by enzymatic hydrolysis and alkaline hydrolysis. The model compound, PTP dihexylester, was synthesized and found to be degraded into terephthalic acid, 3‐(4‐hydroxyphenyl)propionic acid, and 1‐hexanol by Rhizopus delemar lipase, but PTPn homopolyesters and PTP6/10 and PTP6/H copolyesters were resistant to Rhizopus delemar hydrolysis. They were degradable in a sodium hydroxide buffer solution of pH 12 at 60 °C, depending on the number of n's and the copolymer composition. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3043–3051, 2001  相似文献   

6.
In the title compound, C15H24O3, derived from a naturally occurring sesquiterpenoid, the asymmetric unit consists of two mol­ecules differing by 167.4 (8)° in the rotational conformation of the carboxyl group. Each molecule aggregates separately with its own type as carboxyl‐to‐ketone hydrogen‐bonding catemers [O⋯O = 2.715 (6) and 2.772 (6) Å, and O—H⋯O = 169 and 168°]. This generates two crystallographically independent single‐strand hydrogen‐bonding helices passing through the cell in the b direction, with opposite end‐to‐end orientations. One intermolecular C—H⋯O=C close contact exists for the carboxyl group of one of the mol­ecules. The structure is isostructural with that of a closely related unsaturated keto acid reported previously.  相似文献   

7.
Racemic threo‐3‐hydroxy‐2,3‐diphenyl­propionic acid, C15H14O3, (I), crystallizes from ethyl acetate as a conglomerate of separate (+)‐ and (−)‐crystals. The geometries of (I) and its methyl ester are compared. Reduction of (I) gives threo‐1,2‐diphenyl‐1,3‐propane­diol. The synthesis of threo forms of 1,2‐diaryl‐1,3‐propane­diols via 2,3‐diaryl‐3‐hydroxy­propionic acids is discussed.  相似文献   

8.
A simple and reliable method was established for simultaneous determination of 4‐hydroxyphenyl acetic acid, 4‐hydroxyphenyl lactic acid, and 3,4‐hydroxyphenyl propionic acid in human urine by high‐performance liquid chromatography with fluorescence detection. Solid‐phase extraction was used to eliminate the interferences in urine. The separation of three analytes was achieved using a C18 column and a mobile phase formed by a 95:5 v/v mixture of 50 mmol/L ammonium acetate buffer at pH 6.8 that contained 5 mmol/L tetrabutyl ammonium bromide and acetonitrile. Under the optimized conditions, the detection limits of 4‐hydroxyphenyl acetic acid, 4‐hydroxyphenyl lactic acid, and 3,4‐hydroxyphenyl propionic acid were 4.8 × 10−3, 8.80 × 10−3, and 9.00 × 10−3 mg/L, respectively, and the recoveries were in the range of 85.0–120.0% with relative standard deviations of 1.5–3.1%. This method was used to analyze urine samples from breast cancer patients, healthy people and post‐surgery breast cancer patients. Significant differences in urinary levels of 4‐hydroxyphenyl acetic acid and 4‐hydroxyphenyl lactic acid could be found between the breast cancer patients group and other two groups. No effect of age and sex was observed on the urinary levels of 4‐hydroxyphenyl acetic acid and 4‐hydroxyphenyl lactic acid. This method might be helpful for cancer biomarkers discovery in urine.  相似文献   

9.
The structures of three isomeric compounds, C7H4ClNO4·C8H6N2, of phthalazine with chloro‐ and nitro‐substituted benzoic acid, namely, 3‐chloro‐2‐nitrobenzoic acid–phthalazine (1/1), (I), 4‐chloro‐2‐nitrobenzoic acid–phthalazine (1/1), (II), and 4‐chloro‐3‐nitrobenzoic acid–phthalazine (1/1), (III), have been determined at 190 K. In the asymmetric unit of each compound, there are two crystallographically independent chloronitrobenzoic acid–phthalazine units, in each of which the two components are held together by a short hydrogen bond between an N atom of the base and a carboxyl O atom. In one hydrogen‐bonded unit of (I) and in two units of (II), a weak C—H...O interaction is also observed between the two components. The N...O distances are 2.5715 (15) and 2.5397 (17) Å for (I), 2.5655 (13) and 2.6081 (13) Å for (II), and 2.613 (2) and 2.589 (2) Å for (III). In both hydrogen‐bonded units of (I) and (II), the H atoms are each disordered over two positions with (N site):(O site) occupancies of 0.35 (3):0.65 (3) and 0.31 (3):0.69 (3) for (I), and 0.32 (3):0.68 (3) and 0.30 (3):0.70 (3) for (II). The H atoms in the hydrogen‐bonded units of (III) are located at the O‐atom sites.  相似文献   

10.
The title compound, [Fe(C5H5)(C9H9O3)], has Fe–centroid distances of 1.6551 (11) and 1.6445 (11) Å to the cyclo­penta­dienyl rings. The carboxyl group forms hydrogen bonds in the extremely rare synanti chain motif, with O⋯O distances of 2.667 (3) and 2.655 (3) Å. The carboxyl group and the hydrogen‐bonded chains are disordered.  相似文献   

11.
α‐Methyl glutamic acid (L ‐L )‐, (L ‐D )‐, (D ‐L )‐, and (D ‐D )‐γ‐dimers were synthesized from L ‐ and D ‐glutamic acids, and the obtained dimers were subjected to polycondensation with 1‐(3‐dimethylaminopropyl)‐3‐ethylcarbodiimide hydrochloride and 1‐hydroxybenzotriazole hydrate as condensation reagents. Poly‐γ‐glutamic acid (γ‐PGA) methyl ester with the number‐average molecular weights of 5000∼20,000 were obtained by polycondensation in N,N‐dimethylformamide in 44∼91% yields. The polycondensation of (L ‐L )‐ and (D ‐D )‐dimers afforded the polymers with much larger |[α]D | compared with the corresponding dimers. The polymer could be transformed into γ‐PGA by alkaline hydrolysis or transesterification into α‐benzyl ester followed by hydrogenation. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 732–741, 2001  相似文献   

12.
The structures of four isomeric compounds, all C7H4ClNO4·C9H7N, of quinoline with chloro‐ and nitro‐substituted benzoic acid, namely, 2‐chloro‐5‐nitrobenzoic acid–quinoline (1/1), (I), 3‐chloro‐2‐nitrobenzoic acid–quinoline (1/1), (II), 4‐chloro‐2‐nitrobenzoic acid–quinoline (1/1), (III), and 5‐chloro‐2‐nitrobenzoic acid–quinoline (1/1), (IV), have been determined at 185 K. In each compound, a short hydrogen bond is observed between the pyridine N atom and a carboxyl O atom. The N...O distances are 2.6476 (13), 2.5610 (13), 2.5569 (12) and 2.5429 (12) Å for (I), (II), (III) and (IV), respectively. Although in (I) the H atom in the hydrogen bond is located at the O site, in (II), (III) and (IV) the H atom is disordered in the hydrogen bond over two positions with (N site):(O site) occupancies of 0.39 (3):0.61 (3), 0.47 (3):0.53 (3) and 0.65 (3):0.35 (3), respectively.  相似文献   

13.
14.
The title compound, C15H22O3, derived from a naturally occurring sesquiterpenoid, has two mol­ecules in the asymmetric unit, differing principally in the rotational conformation of the carboxyl group. Each species aggregates separately as a carboxyl‐to‐ketone hydrogen‐bonding catemer [O?O = 2.752 (4) and 2.682 (4) Å, and O—H?O = 161 (4) and 168 (4)°], producing two crystallographically independent single‐strand hydrogen‐bonding helices, with opposite end‐to‐end orientations, passing through the cell in the b direction. Three intermolecular C—H?O=C close contacts exist for the ketone.  相似文献   

15.
16.
The title compound, C14H11NO2, consists of a carbazole skeleton with carboxyl­ic acid and methyl groups at positions 3 and 4, respectively. Molecules are linked about inversion centres by O—H?O hydrogen bonds [O?O 2.620 (3) Å] to form centrosymmetric dimers.  相似文献   

17.
We report a novel 1:1 cocrystal of β‐alanine with dl ‐tartaric acid, C3H7NO2·C4H6O6, (II), and three new molecular salts of dl ‐tartaric acid with β‐alanine {3‐azaniumylpropanoic acid–3‐azaniumylpropanoate dl ‐tartaric acid–dl ‐tartrate, [H(C3H7NO2)2]+·[H(C4H5O6)2], (III)}, γ‐aminobutyric acid [3‐carboxypropanaminium dl ‐tartrate, C4H10NO2+·C4H5O6, (IV)] and dl ‐α‐aminobutyric acid {dl ‐2‐azaniumylbutanoic acid–dl ‐2‐azaniumylbutanoate dl ‐tartaric acid–dl ‐tartrate, [H(C4H9NO2)2]+·[H(C4H5O6)2], (V)}. The crystal structures of binary crystals of dl ‐tartaric acid with glycine, (I), β‐alanine, (II) and (III), GABA, (IV), and dl ‐AABA, (V), have similar molecular packing and crystallographic motifs. The shortest amino acid (i.e. glycine) forms a cocrystal, (I), with dl ‐tartaric acid, whereas the larger amino acids form molecular salts, viz. (IV) and (V). β‐Alanine is the only amino acid capable of forming both a cocrystal [i.e. (II)] and a molecular salt [i.e. (III)] with dl ‐tartaric acid. The cocrystals of glycine and β‐alanine with dl ‐tartaric acid, i.e. (I) and (II), respectively, contain chains of amino acid zwitterions, similar to the structure of pure glycine. In the structures of the molecular salts of amino acids, the amino acid cations form isolated dimers [of β‐alanine in (III), GABA in (IV) and dl ‐AABA in (V)], which are linked by strong O—H…O hydrogen bonds. Moreover, the three crystal structures comprise different types of dimeric cations, i.e. (AA)+ in (III) and (V), and A+A+ in (IV). Molecular salts (IV) and (V) are the first examples of molecular salts of GABA and dl ‐AABA that contain dimers of amino acid cations. The geometry of each investigated amino acid (except dl ‐AABA) correlates with the melting point of its mixed crystal.  相似文献   

18.
The thermal stability of several commonly used crystalline matrix‐assisted ultraviolet laser desorption/ionization mass spectrometry (UV‐MALDI‐MS) matrices, 2,5‐dihydroxybenzoic acid (gentisic acid; GA), 2,4,6‐trihydroxyacetophenone (THA), α‐cyano‐4‐hydroxycinnamic acid (CHC), 3,5‐dimethoxy‐4‐hydroxycinnamic acid (sinapinic acid; SA), 9H‐pirido[3,4‐b]indole (nor‐harmane; nor‐Ho), 1‐methyl‐9H‐pirido[3,4‐b]indole (harmane; Ho), perchlorate of nor‐harmanonium ([nor‐Ho + H]+) and perchlorate of harmanonium ([Ho + H]+) was studied by heating them at their melting point and characterizing the remaining material by using different MS techniques [electron ionization mass spectrometry (EI‐MS), ultraviolet laserdesorption/ionization‐time‐of‐flight‐mass spectrometry (UV‐LDI‐TOF‐MS) and electrospray ionization‐time‐of‐flight‐mass spectrometry (ESI‐TOF‐MS)] as well as by thin layer chromatography analysis (TLC), electronic spectroscopy (UV‐absorption, fluorescence emission and excitation spectroscopy) and 1H nuclear magnetic resonance spectroscopy (1H‐NMR). In general, all compounds, except for CHC and SA, remained unchanged after fusion. CHC showed loss of CO2, yielding the trans‐/cis‐4‐hydroxyphenylacrilonitrile mixture. This mixture was unambiguously characterized by MS and 1H‐NMR spectroscopy, and its sublimation capability was demonstrated. These results explain the well‐known cluster formation, fading (vanishing) and further recovering of CHC when used as a matrix in UV‐MALDI‐MS. Commercial SA (SA 98%; trans‐SA/cis‐SA 5 : 1) showed mainly cis‐ to‐trans thermal isomerization and, with very poor yield, loss of CO2, yielding (3′,5′‐dimethoxy‐4′‐hydroxyphenyl)‐1‐ethene as the decarboxilated product. These thermal conversions would not drastically affect its behavior as a UV‐MALDI matrix as happens in the case of CHC. Complementary studies of the photochemical stability of these matrices in solid state were also conducted. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
The title diketo acid, (−)‐,3a,7‐tri­methyl‐5,8‐dioxo‐1,4‐ethano­per­hydro­pentalene‐1‐acetic acid, CHO, is shown to aggregate in the solid state as acid‐to‐acid hydrogen‐bonded catemers, whose chains follow 2 screw axes from each carboxyl H atom to the C=O group of a neighboring carboxyl group [O⋯O = 2.672 (4) Å and O⋯H—O = 173°]. Two parallel counterdirectional screw‐related single‐strand hydrogen‐bonded chains pass through the cell in the a direction. Two intermolecular C=O⋯H—C close contacts are present in this compound. Both this diketo acid and its enol lactone, (+)‐parasantonide [systematic name: (−)‐,3a,7‐tri­methyl‐5‐oxo‐1,4‐ethenoper­hydro­pentalene‐1,8‐carbolactone], CHO, have an R configuration at the methyl­ated chiral center adjacent to the carboxyl group, unlike the precursor from which they are derived, viz. (−)‐santonic acid.  相似文献   

20.
The title keto acid crystallizes as a solvate, C21H25FO4·C2H4O2, with two mol­ecules each of steroid and acetic acid per asymmetric unit. The former are approximately parallel, with opposite end‐to‐end orientation, and form translational carboxyl‐to‐ketone hydrogen‐bonding catemers [O⋯O = 2.679 (6) and 2.650 (5) Å, and O—H⋯O = 165 and 162°] that involve the 3‐ketone group and follow the a axis. The acetic acid mol­ecules are paired by hydrogen bonding, and neither they nor the F atom nor the 11‐ketone group play any overt role in the hydrogen‐bonding scheme of the steroid. Intermolecular C—H⋯O=C close contacts involving three different neighboring mol­ecules exist to the 11‐ketone group, the steroidal carboxyl group and one of the acetic acid molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号