首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nowadays, the growth of ZnO by vapor transport in silica ampoules is generally made in presence of graphite. As it has been already shown, this means that the growth process is carried out in presence of a Zn excess. In order to control that and act, as a consequence, on the physical properties of crystals we have performed a systematic study of the growth process in a wide range of Zn excess compositions using well defined experimental conditions. As a preliminary characterization, optical absorption and electrical properties have been analyzed at room temperature. The results show how some physical properties of as‐grown ZnO crystals can be changed in a controlled way by an adequate combination of different growth conditions such as graphite covering of inner ampoule walls, thermal difference between source material and crystallization zone and additional gas (composition and pressure). In this frame some post‐growth annealing processes can be avoided reducing the time and cost of processes. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
ZnO particles were successfully prepared by one step CTAB‐assisted hydrothermal method with different volume fraction of ethanol‐water mixture solution. The formed thorn‐ball like ZnO particles have an average size of 1 ∼ 2 μm in diameter. XRD result shows a hexagonal wurtzite structure and higher crystallinity. Room‐temperature photoluminescence shows a strong and dominated peak at ∼383 nm with a green emission at ∼510 nm. The intensity ratio between the UV and green emission increased from 1.31 to 7.53 when the volume fraction of ethanol was changed from 0% to 50%, which shows a direct suppression of structural defects just by adjusting the ethanol fraction in reaction solutions. The possible growth and luminescence mechanisms for thorn‐ball like ZnO particles are discussed.  相似文献   

3.
ZnO nanostructures composed of nanosheets have been synthesized by a facile low temperature reaction of Zn(OH)2 and NaOH without the aid of any organic molecular templates. The influences of the reaction parameters, such as the concentrations of Zn(NO3)2, reaction temperatures, and reaction time on the morphologies of ZnO have been investigated. The thickness of ZnO nanosheets can be adjusted from 10–20 nm to 30–40 nm by altering the reaction temperatures from 80 °C to 180 °C. ZnO nanosheets are single crystals and the growth direction is perpendicular to [1100]. A possible gradual nucleation – rapid growth formation mechanism of ZnO nanosheets is proposed. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
Cubic and octahedral Cu2O nano‐ and microcrystals were selectively synthesized via a simple wet chemical reduction route at room temperature, with CuCl2 and NaOH as starting reactants, and ascorbic acid or hydrazine hydrate as the reducer. Hydrazine hydrate could be preferentially adsorbed on different crystal faces of Cu2O, affecting the growth rate along the 〈100〉 to that along the 〈111〉 direction, which resulted in the formation of octahedral Cu2O crystals. When ascorbic acid was used as the reducer, the growth rate along the 〈100〉 to that along the 〈111〉 direction was different, which resulted in the formation of cubic Cu2O crystals. The size of cubic and octahedral Cu2O crystals could be varied by adjusting the molar ratio of OH to Cu2+. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
Large‐yield zinc oxide (ZnO) nanosized tetrapods have been obtained by a standard vapour‐phase growth technique to which a few modifications have been added, such as the separation of the Zn source evaporation region from the Zn oxidation region inside the reactor setup. This modification allows to keep the growth conditions constant and continuous for a long time, thus favouring the obtainment of large amounts of ZnO tetrapod nanostructures. As some contaminations usually occur due to metallic Zn particles and/or different ZnO nanostructures, including not completely reacted ZnO1‐x solid phases, they can be removed by a three‐step “purification” procedure as described in the article. Further to that, a deposition method from suitable liquid suspensions is also reported, which allows to produce homogeneous distributions of ZnO tetrapods on large substrate areas. The proposed procedures are expected to be particularly appropriate for a large production of samples for device use. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
Evaporation‐condensation driven in a closed system by a small temperature difference has demonstrated its ability to deliver semiconducting IV‐VI and II‐VI solid solution crystals of highest compositional uniformity. Geometrical aspects of solution component distribution emerging in the crystals grown in the near equilibrium evaporation/condensation systems are considered in this paper. The conclusion is drawn that no increase in the range of compositional variations with increase in the crystal size is to be anticipated. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
ZnO nanostructures with various morphologies including rod‐like, sheet‐like, needle‐like and flower‐like structures were successfully synthesized via a fast and facile microwave‐assisted hydrothermal process. Reaction temperature, reaction time and the addition of NaOH were adjusted to obtain ZnO with different morphologies. Scanning electron microscopy(SEM), transmission electron microscope(TEM), X‐ray diffraction (XRD) and ultraviolet spectrophotometer (UV) were used to observe the morphology, crystal structure, ultraviolet absorption and photocatalytic activity of the obtained ZnO. The results indicated that growth rate of ZnO nanostructure along [001] direction was more sensitive to temperature compared with those along [101] and [100] directions. The competition between anionic surfactant and OH played an important role in the formation of ZnO with various morphologies. Flower‐like ZnO had better ultraviolet absorption property and excellent photocatalytic activity than ZnO in the other morphologies. On the basis of the above results, a possible growth mechanism for the formation of ZnO nanostructures with different morphologies was described.  相似文献   

8.
A simple and general microwave route is developed to synthesize nanostructured ZnO using Zn(acac)2·H2O (acac = acetylacetonate) as a single source precursor. The reaction time has a great influence on the morphology of the ZnO nanostructures and an interesting spindle‐like nanostructure is obtained. The microstructure and morphology of the synthesized materials are investigated by X‐ray diffraction (XRD), scanning electron microscopy (SEM), field‐emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), high‐resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED). It is found that all of them with hexagonal wurtzite phase are of single crystalline structure in nature. Ultraviolet–visible (UV‐vis) absorption spectra of these ZnO nanostructures are investigated and a possible formation mechanism for the spindle‐like ZnO nanostructures is also proposed.  相似文献   

9.
Millimetric straw‐like rutile monocrystals were grown by the flux growth technique. A suitable mixture of flux (MoO3, V2O5, Li2CO3) and amorphous TiO2 gel was slowly cooled down to 750°C from 1250°C or 1350°C. The best yields of straw‐like rutile were obtained with a nutrient/flux ratio and a cooling rate in the range 0.015‐0.006 and 1.8‐1.9 K h‐1, respectively. The hollowed crystals were characterized by powder and single‐crystal X‐ray diffraction, scanning electron microscopy, microthermometry, and µ‐Raman spectroscopy. As for skeletal crystal, the formation of axial canals in rutile is attributed to a lack of nutrient due to the viscosity of the melt and the high growth rate along [001]. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
ZnO nanotube arrays were synthesized on zinc foil by a simple solvothermal approach. In this approach, zinc foil was used not only as a substrate but also as a zinc‐ion source for the direct growth of ZnO nanotube arrays. X‐ray diffraction (XRD) analysis and Scanning electron microscope (SEM) images, indicated that the structure of the ZnO nanotube arrays on the zinc foil substrate was single‐crystalline with a wurtzite structure. The optical properties of the ZnO nanorod arrays were characterized by photoluminescence spectroscopies and Raman. Photoluminescence exhibited strong UV emission and a broad deep‐level (visible) emission emission at with 325 nm excitation. A possible mechanism is also proposed to account for the growth of the ZnO nanotube arrays. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
Rose‐like ZnO nanostructures were prepared by a low‐temperature solution route with assistance of ethylenediaminetetraacetic acid disodium (EDTA‐2Na). The morphology of ZnO nanostructures was found to change from nanowire arrays to rose‐ and tower‐like architectures with increasing the molar ratio of EDTA‐2Na/Zn2+. Also, the shape evolution of ZnO nanostructures with time was observed from flat nanosheets to wrinkled nanosheets and to rose‐like nanostructures. EDTA‐2Na as a strong complexing agent was found to play a key role in the shape evolution. Photoluminescence spectra show that the rose‐like ZnO architectures have more defects than the nanowire arrays. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
Submicron, micron and millimeter‐scale In‐rich inclusions with different polyhedral morphologies are observed, which are directionally embedded in the InP matrix along <011> direction. The arrangement direction and morphological change of the In‐rich inclusions at different scales are investigated to reveal their morphology evolution. The relative size of the facets ({100} and {111}P/In) bounding the polyhedral In‐rich inclusions is different from the reported results in other crystals, especially when the size of In‐rich inclusions is up to millimeter‐scale. The growth rate dispersion effect and the initial morphologies of the In‐rich droplets have an obvious effect on the final shape of the In‐rich inclusions. Dislocation enrichment surrounding the In‐rich inclusion is observed, which is contributed to the volume expansion of liquid‐solid phase transition and the difference of the thermal expansion coefficient and thermal conductivity between In‐rich droplet and InP matrix. The size and shape of the dislocation enriched region are closely related to the size and shape of the originating In‐rich droplet and the growth condition.  相似文献   

13.
After summing up the main physical properties of ZnO and its subsequent applications the aim of this article is to review the growth of ZnO epitaxial films by PLD, MBE, MOCVD and sputtering under their various aspects, substrates, precursors, reaction chemistry, assessment of the layers etc. …, keeping constantly in mind some key issues for the device applications of ZnO in optoelectronics, surface acoustic filters and spintronics, amongst which the growth of high quality epitaxial layers of both n- or p-type conductivity, the possibility of dissolving transition elements in the layers, the growth of ZnO related alloys and heterostructures are of major significance.  相似文献   

14.
The influence of annealing atmosphere on the optical properties of flower‐like ZnO is investigated. The flower‐like ZnO is composed of nanosheets. Annealing at 500°C results in the increase of the thickness of nanosheets and the enhancement of UV emission. PL spectra results show that the annealing atmosphere affects the visible emission band, which is sensitive to intrinsic and surface defects in the flower‐like ZnO. The vibrational properties of the flower‐like ZnO annealing in different atmospheres are characterized by Raman spectra. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
Hierarchical flower‐like Bi2Te3 was synthesized through a facile solvothermal method. The crystal structure and morphology of the as‐prepared samples were characterized by X‐ray diffraction (XRD), filed emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and high resolution TEM. The reaction parameters such as reaction time, the amount of glucose, concentration of NaOH and the reaction temperature were systematically investigated. Based on the FESEM observations, a possible mechanism defined as a self‐assembly process accompanied by anisotropic growth mechanism was proposed. Moreover, the thermoelectric properties were measured at the temperature range of 300–600 K. The hierarchical flower‐like Bi2Te3 presented good thermoelectrical properties. The maximum ZT value reached up to 0.6 at 600 K, which was higher than that of Bi2Te3 nanoparticles.  相似文献   

16.
Three langasite family crystals of Sr3Ga2Ge4O14 (SGG), Ca3NbGa3Si2O14 (CNGS), and Sr3NbGa3Si2O14 (SNGS) were successfully grown by the modified Bridgman method. Among them, SGG crystals up to 2 inches were obtained with the multi‐crucible industrial Bridgman furnace; SNGS crystal grown in any orientation direction other than along a‐axis was realized. Commercially availability SGG boules and the advantage in SNGS crystal indicated that the modified Bridgman technique is a prospective method to realize the mass‐production of the langasite‐type crystals. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
The in‐plane structures of vapor deposited ultrathin films of distyryl‐oligothiophenes (DS‐2T) on SiO2 substrate were characterized by grazing incidence x‐ray diffractometry (GIXD). Two polymorphs, low‐temperature and high‐temperature phases, were identified, and the two dimensional unit cell parameters were determined for each polymorph. The polymorphism depends on substrate temperature and film thickness. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
In order to improve the performance of ZnO‐based solar cells, highly‐ordered hierarchical ZnO nanostructures were design and fabricated. The hierarchical nanostructures were grown on FTO (fluorine doped tin oxide, SnO2:F) glass substrates via a facile, low‐temperature, and low‐cost chemical route. The morphology and structure of the obtained products has been confirmed by field‐emission scanning electron microscopy and X‐ray diffraction measurements. The performance investigation of the prepared dye‐sensitized solar cells (DSSCs) demonstrates that the hierarchical ZnO nanostructure‐based solar cell shows a higher short‐circuit current density compared with the ZnO nanowire counterpart. The enhanced current density may be due to the fact that the surface area of the hierarchical nanostructures is increased. These results indicate that hierarchical ZnO nanostructures are more suitable for the application as photoelectrode of DSSCs. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
We report a novel and simple solution‐based technique for depositing 2‐D zinc oxide platelets at low temperature. Nanoplatelets that were mostly a‐oriented associated with the Lotgering orientation factor of 0.65 were obtained by locating a glass substrate at a distance of about 5cm over the aqueous vapour of the boiling precursor. Experiments were carried out to optimize the coating parameters by placing the substrate at different positions, durations and the pH of the precursor. The X‐ray diffraction studies confirmed the structure associated with the crystallites to be wurzite. The different morphology of the zinc oxide films and blue light emission were observed using scanning electron microscopy and fluorescence spectroscopy respectively.  相似文献   

20.
Wurtzite ZnO nanonail structures have been grown on sapphire substrate by simple thermal evaporation of Zn powder in oxygen ambient. Growth parameters such as growth temperature and oxygen gas flow have been examined for the growth of nanonail structure. It is found that the nanonail structures repeatedly grow under a certain relation between the growth temperature and the oxygen flow. Also, at higher growth temperature, the nanonails grow in the form of branched‐structures. The grown ZnO nanonails have hexagonally well‐faceted cap and grow mostly perpendicular to the sapphire substrate. Excellent luminescence properties of a strong UV emission peak with negligible green band have been obtained at room temperature. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号