首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mg:Ru:Fe:LiNbO3 crystals with various doping concentration of MgO have been grown by Czochralski method. The type of charge carriers and photorefractive properties in Mg:Ru:Fe:LiNbO3 crystals were measured by two‐wave coupling method using Kr+ laser (476 nm) and He‐Ne laser (633 nm) as light sources. We found that holes were the dominant charge carriers under blue light irradiation while electrons were the dominant charge carriers under red light irradiation. Mg2+ ions behaved no longer as damage resistant, but promoter to the photorefractive properties at 476 nm wavelength. The photorefractive properties under blue light improved with the increase concentration of Mg2+ ions. The enhancement mechanisms of the blue photorefractive were suggested. Experimental results definitely showed that Mg‐doped two‐centre Ru:Fe:LiNbO3 was a promising blue photorefraction material for holographic volume storage.  相似文献   

2.
Zn:Mn:Fe:LiNbO3 crystals were prepared by Czochralski technique. Its microstructure was measured and analyzed by UV‐Vis absorption spectra. The optical damage resistance of Zn:Mn:Fe:LiNbO3 crystals was characterized by the transmitted beam pattern distortion method. It increases remarkably when the concentration of ZnO is over a threshold concentration. Its value in Zn(7.0 mol%):Mn:Fe:LiNbO3 crystal is about three orders of magnitude higher that in the Mn:Fe:LiNbO3 crystal. The dependence of the defects on the optical damage resistance was discussed. The non‐volatile holographic storage was realized in all crystals, and the sensitivity of the Zn(7.0 mol%):Mn:Fe:LiNbO3 crystal is much higher than that of others. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
In this paper, photorefractive properties of Mg:Ce:Cu:LiNbO3 crystals were studied. The crystals doped with different concentration of Mg ions have been grown by the Czochralski method. Mg concentrations in grown crystals were analyzed by an inductively coupled plasma optical emission spectrometry (ICP‐OE/MS). The crystal structures were analyzed by the X‐ray powder diffraction (XRD), ultraviolet‐visible (UV‐Vis) absorption spectra and infrared (IR) transmitatance spectra. The photorefractive properties of crystals were experimentally studied by using two‐beam coupling. In this experiment we determined the writing time, maximum diffraction efficiency and the erasure time of crystals samples with He‐Ne laser. The results showed that the dynamic range (M/#), sensitivity (S) and diffraction efficiency (η) were dependent on the Mg doping concentration, and the Mg(4.58mol%):Ce:Cu:LiNbO3 crystal was the most proper holographic recording media material among the six crystals studied in the paper. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
Mg:Ce:Fe:LiNbO3 crystals were prepared with fixed concentrations of Fe2O3 and CeO2, and differing concentrations of MgO by the Czochralski technique. Their infrared transmission spectra were measured in order to investigate their defect structures and their optical damage resistance was characterized by the photoinduced birefringence change and transmission facula distortion method. The optical damage resistance of Mg:Ce:Fe:LiNbO3 crystals increases remarkably when the concentration of MgO exceeds a threshold concentration. The dependence of the optical damage resistance on the defect structure of Mg:Ce:Fe:LiNbO3 crystals is discussed in detail. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
Cu:LiNbO3 crystal and Fe:Cu:LiNbO3 crystals were grown by the Czochralski method from congruent melt. The OH absorption spectrum of doped lithium niobate crystals was measured. The photorefractive properties of doped crystals were studied by the two‐wave coupling method. The results of the two‐wave coupling experiments showed that as the concentration of doping ions increased, the diffraction efficiency and the dynamic range enhanced, the holographic response time shortened. The recording time of Fe(0.10wt%): Cu(0.10wt%): LiNbO3 crystal is only a tenth of that of Cu(0.05wt%): LiNbO3 crystal. Among all samples, the dynamic range of the Fe(0.10wt%): Cu(0.10wt%): LiNbO3 crystal was the most largest (up to 40.78). (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
Near‐stoichiometric LiNbO3 single crystal tri‐doped with ZrO2, MnO and Fe2O3 was grown from Li‐riched melt by Czochralski method. The defect structures and composition of these crystals were analyzed by means of ultraviolet‐visible and infrared transmittance spectra. The appearance of 3466 cm‐1 peak in infrared spectra showed that the crystal grown from Li‐riched melt was near stoichiometric. The photorefractive properties at the wavelength of 488 nm and 633 nm were investigated with two‐beam coupling experiment, respectively. The experimental results showed that the response speed and sensitivity were enhanced significantly and the high diffraction efficiency was obtained at 488 nm wavelength. This manifested that near‐stoichiometric LiNbO3:Mn:Fe:Zr crystal was an excellent candidate for holographic storage. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
Congruent LiNbO3:Fe and LiNbO3:Mg,Fe crystals were grown by Czochralski method, and vapor transport equilibration technique was employed to improve the [Li]/[Nb] ratios of these crystals. The influence of stoichiometry and MgO dopant on the photorefractive sensitivity and response time of LiNbO3:Fe crystals was investigated. Both stoichiometry and MgO dopant can effectively reduce the amount of intrinsic defects, but MgO can also decrease the concentration of Fe2+ ions in Li‐sites. Near‐stoichiometric and MgO doped LiNbO3:Fe crystal has high photorefractive sensitivity and fast response time. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
Near‐stoichiometric Mn:Fe:LiNbO3 crystals doped with various concentration of ZrO2 were grown by top seed solution growth (TSSG) method in the air atmosphere. The Zr concentration in the crystal was determined by inductively coupled plasma optical emission spectrometer. The defect structures were analyzed by means of ultraviolet‐visible and infrared transmittance spectra. The appearance of vibration peak at 3466 cm‐1 in infrared spectra manifested that Li/Nb ratio in crystals approached to stoichiometric proportion. The fundamental absorption edge represented continuous red‐shift which was discrepancy with congruent doped LiNbO3 crystals showed that doping ions possessed different location mechanism. The light‐induced scattering of the doped stoichiometric LiNbO3crystals were quantitatively scaled via incident exposure energy. The results demonstrated that Zr(2 mol%):Mn:Fe:LiNbO3 crystal had the weakest light‐induced scattering and the mechanism related to their defect structures was discussed. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
Lithium niobate (LiNbO3) crystals doped with Fe and Fe:Mn were grown by Czochralski technique. The doping concentrations of Fe and Mn were optimized. Transmission studies reveal broad absorption band centered at 488 nm. The UV cutoff observed for Fe doped LiNbO3 is 358 nm whereas for Fe:Mn codoped LiNbO3 is 352 nm. This decrease in UV cutoff for Fe and Mn codoped LiNbO3 compared to only Fe doped LiNbO3 is due to the increase in Li/Nb ratio. Optical homogeneity was assessed using conoscopy and birefringence interferometry. Dark and photo conductivity measurements prove that LiNbO3 is a negative photo conducting material. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
In:Fe:Cu:LiNbO3 crystals with reduced/oxidized treatments were prepared by the Czochralski method. The defect structure was analyzed by the UV‐Visible absorption spectra. The blue photorefractive properties, such as the refractive index change, response time, recording sensitivity, dynamic range as well as two‐wave coupling gain coefficient, were also investigated at 488 nm wavelength using the two‐wave coupling experiment. Comparing the as‐grown and oxidized In:Fe:Cu:LiNbO3 crystals, the reduced sample has the highest recording sensitivity and largest dynamic range. Meanwhile, the high diffraction efficiency is still maintained. Experimental results definitely show that reduction treatment is an effective method to improve the blue photorefractive performance of In:Fe:Cu:LiNbO3 crystals. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
A series of Zn:In:Fe:LiNbO3 crystals were prepared by Czochralski method. The crystal composition and defect structure were analyzed by ICP‐OE/MS, UV–vis and IR spectroscopy. The results show that with increasing In3+ doping concentration in melt, the segregation coefficients of both Zn and In ions decrease. The optical damage resistance of Zn:In:Fe:LiNbO3 crystals was studied by the transmitted beam pattern distortion method. It is found that the optical damage resistance of Zn:In(3mol%):Fe LiNbO3 crystals is two orders of magnitude higher than that of Zn:Fe:LiNbO3. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
Influence of defect structure on the infrared transmission spectra of OH in Zn:Fe:LiNbO3 crystals with various ZnO concentration and different Li/Nb ratios was investigated. It indicates that above the Zn concentration threshold the OH absorptions bands successively shift from 3482cm‐1 to 3504cm‐1 and 3529cm‐1. The intensity of the 3504cm‐1 band increases with ZnO concentration increasing. The optical damage resistance of the Zn:Fe:LiNbO3 crystals increases rapidly when the ZnO concentration exceeds a threshold value. This result contributed to the site alteration from the Li sites to Nb sites due to Zn‐doping in crystal. © 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim  相似文献   

13.
Hf:Fe:LiNbO3 crystals were grown in air by the Czochralski technique with various [Li]/[Nb] ratios ([Li]/[Nb]=0.94, 1.05, 1.20) in melt. The defect structure and location of doped ions were analyzed by the UV‐visible absorption spectra. The optical damage resistance of Hf:Fe:LiNbO3 crystals was investigated by the photoinduced birefringence change and the transmitted light spot distortion method. The results show that the optical damage resistance ability of Hf:Fe:LiNbO3 crystals decreases with the increase of the [Li]/[Nb] ratio. The dependence of the optical damage resistance of Hf:Fe:LiNbO3 crystals on the defect structure is discussed in detail. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
The optical absorption spectra of LiNbO3 (LN), Fe:LiNbO3 (Fe:LN), and Zn:Fe:LiNbO3 (Zn:Fe:LN) single crystals grown by Bridgman method were measured and compared. The absorption characteristics of the samples and the effects of growth process conditions on the absorption spectra were investigated. The Fe, Zn and Li concentrations in the crystals were analyzed by inductively coupled plasma (ICP) spectrometry. The results indicated that the overall Fe ion and Fe2+ concentration in Fe:LN and Zn:Fe:LN crystals increased along the growing direction. The incorporation of ZnO in Fe:LN crystal induced increase of Fe2+ in the crystal. Among Fe‐doped and Zn:Fe‐codoped LN single crystals, 3 mol% ZnO doped Fe:LN had a biggest change of Fe2+ ion concentration from bottom to top part of crystal. The effects of technical conditions (atmosphere and thermal history) on Fe2+ ion concentration were discussed. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
The Er3+doped Mg:LiNbO3single crystal fibers employed in our experiment were grown in air by a micro‐pulling down (μ‐PD) method from host materials of a congruent Li/Nb (0.945) ratio which were melt‐doped with a nominal molar concentration of 1, 3, 5% MgO and 0.6% Er2O3. The X‐ray diffraction analysis results indicated that the co‐doped crystals main tained the same structural characteristics as the undoped LiNbO3, however the lattice parameters with Mg differed; c (Å) value decreased, and a (Å) increased than of pure LiNbO3. The influence of dopants on the photoluminescence (PL) properties of the Er:Mg:LiNbO3 single crystal fibers excited by laser lines of 514 nm was reported. Also, the PL properties according to temperature and the excitation power of Er:Mg:LiNbO3 crystal fibers were analyzed.  相似文献   

16.
1 mol%, 2 mol%, 3 mol%, 4 mol% and 5 mol% In3+ doped LiNbO3 crystals were grown by the Czochralski method, respectively. Oxidized treatment of some crystals was carried out. The infrared transmission spectra and photo‐damage resistance of the samples were measured. The results showed that the OH absorption peaks of In(3mol%):LiNbO3, In(4mol%):LiNbO3 and In(5mol%):LiNbO3 crystals were located at about 3508 cm‐1, while those of In(1mol%):LiNbO3 and In(2mol%):LiNbO3 crystals were located at about 3484cm‐1. When the doped In3+ concentration reached its threshold in LiNbO3 crystal, photo‐damage resistance of In:LiNbO3 crystals was two orders of magnitude higher than that of pure LiNbO3 crystal. The experimental results of the second harmonic generation (SHG) showed that the phase matching temperatures of In:LiNbO3 crystals were lower than those of Zn:LiNbO3 and Mg:LiNbO3 crystals and the SHG efficiency reached 38%. Oxidization treatment was also found to make the dark trace resistance of crystals increase. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
Mg: Er: LiNbO3 crystals were grown by the Czochralski technique with various concentrations of MgO = 2 mol%, 4 mol%, 6 mol% and the fixed concentration of Er2O3= 1 mol% in the melt, and the 8 mol%Mg: 1 mol%Er: LiNbO3 crystal was fabricated by the Czochralski technique with special technology process. The crystals were treated by polarization, reduction and oxidation. The segregation coefficients of Mg2+ and Er3+ in Mg: Er: LiNbO3 crystals were measured by X‐ray fluorescence spectrograph, as well as the crystal's defect structure and optical properties were analyzed by the UV‐Vis, IR and fluorescent spectroscopy. The pump wavelength and the surge wavelength were determined. Using m‐line method tested optical damage resistance of those crystals, the results show that photodamage threshold of Mg: Er: LiNbO3 crystals are higher than that of Er: LiNbO3 crystal, and the oxidation treat could enhance the photodamage resistant ability of crystals while the reduction treat could depress the ability. The optical damage resistance of 8 mol%Mg: 1 mol%Er: LiNbO3 crystal was the strongest among the samples, which was two orders magnitude higher than that of 1 mol%Er: LiNbO3 crystal. The dependence of the optical properties on defect structure of Mg: Er: LiNbO3 crystals was discussed. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
A series of In:Nd:LiNbO3 crystals were grown by Czochralski technique and were made into waveguide substrates. The optical damage resistance of the In:Nd:LiNbO3 waveguide substrates was characterized by measurement of the holographic method. The optical damage resistance of In (3.0 mol%):Nd:LiNbO3 was much higher than that of other In:Nd:LiNbO3. The ultraviolet‐visible (UV‐Vis) absorption spectra the In:Nd:LiNbO3 crystals were measured and investigated. The structure defects were discussed in this paper to explain the enhance of the optical damage resistance in the In:Nd:LiNbO3 crystals. (© 2003 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
The near sotichiometric Ce:LiNbO3 (Ce:SLN) crystals were grown by the top seeded solution growth (TSSG) method by adding K2O flux to Li2O‐Nb2O5 melt. Their UV‐vis absorption spectra and IR spectra were measured and discussed to investigate their defect structure. The results showed that the grown crystals were near stoichiometric and Ce ions in the crystals located the Li site. Photorefractive properties of Ce:SLN crystals were studied by two‐wave coupling experiment. The results of the two‐wave coupling experiments of the crystals showed that as the CeO2 doping concentrations increased, the diffraction efficiency increased, photoconductivity decreased and the writing time and erasure time increased. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
1, 3 and 5 mol% ZnO doped LiNbO3 film and 2 mol% MgO doped LiNbO3 multilayer films were grown on the LiNbO3 (001) substrate by liquid phase epitaxy (LPE) method with a Li2O‐V2O5 system. We examined the optical transmission spectra of the Zn:LiNbO3 by Fourier Transform‐Infrared Spectrophotometer (FT‐IR). The crystallinity and the lattice mismatch between the Zn:LiNbO3 film and Mg:LiNbO3 film was confirmed by x‐ray rocking curve (XRC) and observed the ZnO and MgO distribution in the cross‐section of the multilayer thin films by electron probe micro analyzer (EPMA). Furthermore, the surface morphology of the films was observed using atomic force microscopy (AFM). (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号