首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Tin–lithium exchange reaction of (E)‐α‐stannylvinyl sulfides 1 with n‐butyllithium gave (Z)‐α‐arylsulfanylvinyllithiums 2 , which reacted with aldehydes or ketones 3 to afford stereoselectively (2Z)‐2‐arylsulfanylallylic alcohols 4 in good to high yields. © 2008 Wiley Periodicals, Inc. Heteroatom Chem 19:639–643, 2008; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20487  相似文献   

2.
Terephthalic Schiff bases react with hypophosphorous acid to form 1,4‐phenylene‐bis‐N‐alkyl‐aminomethanephosphonous acids in moderate yields. NMR studies demonstrated that—for several examples—this reaction led to the exclusive formation of only one diastereomeric form. NMR investigation of a chiral salt identified the meso form. In contrast hereto, a corresponding addition of hypophosphorous acid to a chiral Schiff base proved to be not stereoselective; all three possible diastereoisomers were formed in a 4:1:1 ratio. © 2008 Wiley Periodicals, Inc. Heteroatom Chem 19:283–287, 2008; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20422  相似文献   

3.
A highly enantioselective Pd‐catalysed decarboxylative asymmetric allylic alkylation of cyclopentanone derived α‐aryl‐β‐keto esters employing the (R,R)‐ANDEN‐phenyl Trost ligand has been developed. The product (S)‐α‐allyl‐α‐arylcyclopentanones were obtained in excellent yields and enantioselectivities (up to >99.9 % ee). This represents one of the most highly enantioselective formations of an all‐carbon quaternary stereogenic center reported to date. This reaction was demonstrated on a 4.0 mmol scale without any deterioration of enantioselectivity and was exploited as the key enantioselective transformation in an asymmetric formal synthesis of the natural product (+)‐tanikolide.  相似文献   

4.
3‐Carbethoxy‐5‐phenyl‐5H,7H‐thiazolo[3,4‐c]oxazol‐4‐ium‐1‐olate was generated from (2R,4R)‐N‐ethoxyoxalyl‐2‐phenylthiazolidine‐4‐carboxylic acid and its reactivity studied. This münchnone showed low reactivity as dipole although from the reaction with dimethyl acetylenedicarboxylate the corresponding (3R)‐3‐phenyl‐17H,3H‐pyrrolo[1,2‐c]thiazole‐5,6,7‐tricarboxylate could be isolated. The thermolysis of (2R,4R)‐N‐ethoxyoxalyl‐2‐phenylthiazolidine‐4‐carboxylic acid in refluxing acetic anhydride led to the synthesis of N‐(1‐ethoxycarbonyl‐2‐phenylvinyl)‐2‐phenyl‐4‐thioxo‐1,3‐thiazolidine. The structure of methyl (2R,4R)‐N‐ethoxyoxalyl‐2‐phenylthiazoliddine‐4‐carboxylate was determined by X‐ray crystallography.  相似文献   

5.
β‐Hydroxy‐α‐amino acids figure prominently as chiral building blocks in chemical synthesis and serve as precursors to numerous important medicines. Reported herein is a method for the synthesis of β‐hydroxy‐α‐amino acid derivatives by aldolization of pseudoephenamine glycinamide, which can be prepared from pseudoephenamine in a one‐flask protocol. Enolization of (R,R)‐ or (S,S)‐pseudoephenamine glycinamide with lithium hexamethyldisilazide in the presence of LiCl followed by addition of an aldehyde or ketone substrate affords aldol addition products that are stereochemically homologous with L ‐ or D ‐threonine, respectively. These products, which are typically solids, can be obtained in stereoisomerically pure form in yields of 55–98 %, and are readily transformed into β‐hydroxy‐α‐amino acids by mild hydrolysis or into 2‐amino‐1,3‐diols by reduction with sodium borohydride. This new chemistry greatly facilitates the construction of novel antibiotics of several different classes.  相似文献   

6.
By introducing a disposable activating substituent at C‐3, the asymmetric 1,4‐addition to a notoriously unreactive 2‐substituted chromenone was achieved with high levels of (2R)‐stereoselectivity in the presence of a chiral CuI‐phosphoramidite complex as a catalyst. This paved the way for an efficient and conceptually novel synthesis of (R,R,R)‐α‐tocopherol from readily available starting materials.  相似文献   

7.
Hydromagnesiation of alkynylsilanes 1 in diethyl ether gave (Z)‐α‐silylvinyl Grignard reagents 2 , which reacted with arylsulfenyl chlorides 3 to afford stereoselectively (E)‐α‐silylvinyl sulfides 4 in good yields. (E)‐α‐Silylvinyl sulfides 4 could undergo the cross‐coupling reactions with Grignard reagents in the presence of NiCl2(PPh3)2 to give stereoselectively (Z)‐1,2‐disubstituted vinylsilanes 5 . © 2005 Wiley Periodicals, Inc. Heteroatom Chem 16:644–647, 2005; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20165  相似文献   

8.
A series of activated urethane‐type derivatives of α‐amino acids were synthesized and applied to polypeptide synthesis. The urethane used herein, N‐(4‐nitrophenoxycarbonyl)‐α‐amino acids 1 , were synthesized by N‐carbamoylation of γ‐benzyl‐L ‐glutamate, β‐benzyl‐L ‐aspartate, L ‐leucine, L ‐phenylalanine, and L ‐proline, with 4‐nitrophenyl chloroformate. When 1 was dissolved in N,N‐dimethylacetamide (DMAc) and heated at 60 °C, it was smoothly converted into the corresponding polypeptides with releasing 4‐nitrophenol and carbon dioxide. Spectroscopic analyses of the obtained polypeptides revealed that they were comparable with the authentic polypeptides synthesized by the ring‐opening polymerizations of amino acid N‐carboxyanhydrides (NCAs). Besides the successful polycondensations of a series of 1 , their polycondensations of 1a and other 1 were also successfully carried out to obtain the corresponding statistic copolypeptides. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2525–2535, 2008  相似文献   

9.
In explorations of syntheses and chemistry of spiroheterocycles, we found that the reaction of 2‐diazopropane with (E)‐α‐arylidenepyrrolin‐2‐one, (E)‐α‐arylidene‐γ‐butyrolactone, and (E)‐arylidene‐N‐arylsuccinimide derivatives produced spiro‐Δ1‐pyrazolines. The photolysis of Δ1‐pyrazolines has led to cyclopropanes. The structures of the obtained adducts have been assigned by means of spectroscopic measurements. J. Heterocyclic Chem., (2011).  相似文献   

10.
3,3′‐[2,2′‐Oxy‐bis‐(4S‐methyl, 5R‐phenyl‐1,3,2‐oxazaborolidine)]ethylene ( 4a ) and 3,3′‐[2, 2′‐oxy‐(4S‐methyl‐5R‐phenyl‐1,3,2‐oxazaborolidine)‐ (1,3,2‐benzoxazaborolidine)]ethylene ( 4b ) were synthesized by the reaction of N,N′‐bis‐[(1R,2S)‐norephedrine]oxalyl ( 3a ) or N,N′‐[((1R,2S)‐norephedrine, o‐hydroxyphenylamine]oxalyl ( 3b ) with BH3‐THF. The molecular structure of these compounds was established by NMR and infrared spectroscopy. The molecular geometry for 4 was studied by means of theoretical methods, resulting in structures that were in total agreement with those obtained by spectroscopy data and X‐ray diffraction. © 2005 Wiley Periodicals, Inc. Heteroatom Chem 16:513–519, 2005; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20151  相似文献   

11.
A high‐performance liquid chromatographic (HPLC) method for enantioseparation of bupropion was developed using two isothiocyanate‐based chiral derivatizing reagents, (S)‐1‐(1‐naphthyl) ethyl isothiocyanate, (S)‐NEIT, and (R)‐α‐methyl benzyl isothiocyanate, (R)‐MBIT. The diastereomers synthesized with (S)‐NEIT were enantioseparated by reversed‐phase HPLC using gradient elution with mobile phase containing water and acetonitrile, whereas diastereomers synthesized with (R)‐MBIT were enantioseparated using triethyl amine phosphate buffer and methanol. Derivatization conditions were optimized and the method was validated for accuracy, precision and limit of detection. The limit of detection was found to be 0.040–0.043 µg/mL for each of the diastereomers prepared with (S)‐NEIT. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
Depsipeptides and cyclodepsipeptides are analogues of the corresponding peptides in which one or more amide groups are replaced by ester functions. Reports of crystal structures of linear depsipeptides are rare. The crystal structures and conformational analyses of four depsipeptides with an alternating sequence of an α,α‐disubstituted α‐amino acid and an α‐hydroxy acid are reported. The molecules in the linear hexadepsipeptide amide in (S)‐Pms‐Acp‐(S)‐Pms‐Acp‐(S)‐Pms‐Acp‐NMe2 acetonitrile solvate, C47H58N4O9·C2H3N, ( 3b ), as well as in the related linear tetradepsipeptide amide (S)‐Pms‐Aib‐(S)‐Pms‐Aib‐NMe2, C28H37N3O6, ( 5a ), the diastereoisomeric mixture (S,R)‐Pms‐Acp‐(R,S)‐Pms‐Acp‐NMe2/(R,S)‐Pms‐Acp‐(R,S)‐Pms‐Acp‐NMe2 (1:1), C32H41N3O6, ( 5b ), and (R,S)‐Mns‐Acp‐(S,R)‐Mns‐Acp‐NMe2, C30H37N3O6, ( 5c ) (Pms is phenyllactic acid, Acp is 1‐aminocyclopentanecarboxylic acid and Mns is mandelic acid), generally adopt a β‐turn conformation in the solid state, which is stabilized by intramolecular N—H…O hydrogen bonds. Whereas β‐turns of type I (or I′) are formed in the cases of ( 3b ), ( 5a ) and ( 5b ), which contain phenyllactic acid, the torsion angles for ( 5c ), which incorporates mandelic acid, indicate a β‐turn in between type I and type III. Intermolecular N—H…O and O—H…O hydrogen bonds link the molecules of ( 3a ) and ( 5b ) into extended chains, and those of ( 5a ) and ( 5c ) into two‐dimensional networks.  相似文献   

13.
As part of the structure‐activity relationship of the dopamine D2 and serotonin 5‐HT3 receptors antagonist 1, which is a clinical candidate with a broad antiemetic activity, the synthesis and dopamine D2 and serotonin 5‐HT3 receptors binding affinity of (R)‐5‐bromo‐N‐(1‐ethyl‐3‐methylhexahydro‐1,3‐diazin‐5‐yl)‐ and (R)‐5‐bromo‐N‐(1‐ethyl‐5‐methyloctahydro‐1,5‐diazocin‐3‐yl)‐2‐methoxy‐6‐methylaminopyridine‐3‐carboxam‐ides ( 2 and 3 ) are described. Treatment of 1‐ethyl‐2‐(p‐toluenesulfonyl)amino‐3‐methylaminopropane dihy‐drochloride ( 4a ) with paraformaldehyde and successive deprotection gave the 5‐aminohexahydro‐1,3‐diazine 6 in excellent yield. 3‐Amino‐1‐ethyl‐5‐methyloctahydro‐1,5‐diazocine ( 15 ) was prepared from 2‐(benzyloxycarbonyl)amino‐3‐[[N‐(tert‐butoxycarbonyl)‐N‐methyl]amino]‐1‐ethylaminopropane ( 9 ) through the intramolecular amidation of (R)‐3‐[N‐[(2‐benzyloxycarbonylamino‐3‐methylamino)propyl]‐N‐ethyl]aminopropionic acid trifluoroacetate ( 12 ), followed by lithium aluminum hydride reduction of the resulting 6‐oxo‐1‐ethyl‐5‐methyloctahydrodiazocine ( 13 ) in 41% yield. Reaction of the amines 6 and 15 with 5‐bromo‐2‐methoxy‐6‐methylaminopyridine‐3‐carboxylic acid furnished the desired 2 and 3 , which showed much less potent affinity for dopamine D2 receptors than 1 .  相似文献   

14.
Copolymerization of ornithine‐ and lysine‐derived N‐propargylamides, N‐α‐tert‐butoxycarbonyl‐N‐δ‐fluorenylmethoxycarbonyl‐L ‐ornithine N′‐propargylamide ( 1 ), N‐α‐tert‐butoxycarbonyl‐N‐ε‐fluorenylmethoxycarbonyl‐L ‐lysine N′‐propargylamide ( 2 ), N‐α‐fluorenylmethoxycarbonyl‐N‐δ‐tert‐butoxycarbonyl‐L ‐ornithine N′‐propargylamide ( 3 ), and N‐α‐fluorenylmethoxycarbonyl‐N‐ε‐tert‐butoxycarbonyl‐L ‐lysine N′‐propargylamide (4) with dipropargyl adipate was carried out using (nbd)Rh+6‐C6H5B?(C6H5)3] as a catalyst in THF to obtain polymer gels in 80–93% yields. The gels adsorbed N‐benzyloxycarbonyl L ‐alanine, N‐benzyloxycarbonyl L ‐alanine methyl ester, and (S)‐(+)‐1‐phenyl‐1,2‐ethanediol preferably than the corresponding optical isomers. The order of chiral discrimination was poly( 1 ) > poly( 4 ) > poly( 2 ), poly( 3 ) gels. The fluorenylmethoxycarbonyl groups of the gels could be partly removed by piperidine treatment, leading to increase of adsorptivity but decrease of chiral recognition ability. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4175–4182, 2008  相似文献   

15.
Constrained peptidomimetic scaffolds are of considerable interest for the design of therapeutically useful analogues of bioactive peptides. We present the single‐step cyclization of (S)‐ or (R)‐α‐hydroxy‐β2‐ or α‐substituted‐α‐hydroxy‐β2, 2‐amino acids already incorporated within oligopeptides to 5‐aminomethyl‐oxazolidine‐2,4‐dione (Amo) rings. These scaffolds can be regarded as unprecedented β2‐ or β2, 2‐homo‐Freidinger lactam analogues, and can be equipped with a proteinogenic side chain at each residue. In a biomimetic environment, Amo rings act as inducers of extended, semi‐bent or folded geometries, depending on the relative stereochemistry and the presence of α‐substituents.  相似文献   

16.
A stereoregular 2‐amino‐glycan composed of a mannosamine residue was prepared by ring‐opening polymerization of anhydro sugars. Two different monomers, 1,6‐anhydro‐2‐azido‐mannose derivative ( 3 ) and 1,6‐anhydro‐2‐(N, N‐dibenzylamino)‐mannose derivative ( 6 ), were synthesized and polymerized. Although 3 gave merely oligomers, 6 was promptly polymerized into high polymers of the number‐average molecular weight (Mn) of 2.3 × 104 to 2.9 × 104 with 1,6‐α stereoregularity. The differences of polymerizability of 3 and 6 from those of the corresponding glucose homologs were discussed. It was found that an N‐benzyl group is exceedingly suitable for protecting an amino group in the polymerization of anhydro sugars of a mannosamine type. The simultaneous removal of O‐ and N‐benzyl groups of the resulting polymers was achieved by using sodium in liquid ammonia to produce the first 2‐amino‐glycan, poly‐(1→6)‐α‐D ‐mannosamine, having high molecular weight through ring‐opening polymerization of anhydro sugars.© 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

17.
The total synthesis and stereochemical structural elucidation of JBIR‐39, containing four nonproteinogenic piperazic acid (Piz) residues, is reported. The synthesis includes Sc(OTf)3‐catalyzed acylation of a Piz(γ‐OTBS) derivative with piperazic acid chloride, providing the desired Piz‐Piz(γ‐OTBS) dipeptide in high yield without epimerization. After assembling two additional Piz moieties and (S)‐isoleucic acid at the N‐terminus, amidation with the (R)‐α‐methylserine ester at the C‐terminus, and deprotection afforded the desired (2R,8S)‐hexapeptide, which is the assumed structure of JBIR‐39. Although the spectral data of the (2R,8S)‐hexapeptide was not identical to JBIR‐39, further synthesis of three stereoisomers confirmed the stereochemical structure of JBIR‐39 to be (2S,6S,8S,11R,16S,21R,26S,27S).  相似文献   

18.
An improved and practical procedure for the stereoselective synthesis of anti‐β‐hydroxy‐α‐amino acids (anti‐βhAAs), by palladium‐catalyzed sequential C(sp3)?H functionalization directed by 8‐aminoquinoline auxiliary, is described. followed by a previously established monoarylation and/or alkylation of the β‐methyl C(sp3)?H of alanine derivative, β‐acetoxylation of both alkylic and benzylic methylene C(sp3)?H bonds affords various anti‐β‐hydroxy‐α‐amino acid derivatives. As an example, the synthesis of β‐mercapto‐α‐amino acids, which are highly important to the extension of native chemical ligation chemistry beyond cysteine, is described. The synthetic potential of this protocol is further demonstrated by the synthesis of diverse β‐branched α‐amino acids. The observed diastereoselectivities are strongly influenced by electronic effects of aromatic AAs and steric effects of the linear side‐chain AAs, which could be explained by the competition of intramolecular C?OAc bond reductive elimination from PdIV intermediates vs. intermolecular attack by an external nucleophile (AcO?) in an SN2‐type process.  相似文献   

19.
The radical polymerization of an optically active methacrylamide, N‐[(R)‐α‐methoxycarbonylbenzyl]methacrylamide, was carried out in the absence and presence of Lewis acids such as yittribium trifluoromethanesulfonate [Yb(OTf)3] and scandium trifluoromethanesulfonate [Sc(OTf)3]. Catalytic amounts of the Lewis acids significantly affected the stereoregularity of the obtained polymers. The polymerization with Yb(OTf)3 in tetrahydrofuran afforded isotactic polymers (up to mm = 87%), whereas the conventional radical method without the Lewis acid produced polymers rich in syndiotacticity (up to rr = 88%). The radical polymerization in the presence of MgBr2 proceeded in a heterotactic‐selective manner (mr = 63%). Thus, the isotactic, syndiotactic, and heterotactic poly(methacrylamide)s were synthesized by the radical processes. The chiral recognition abilities of the obtained optically active poly(methacrylamide)s were affected by the stereoregularity. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3354–3360, 2003  相似文献   

20.
(E)‐α‐Arylsulfanylvinylstannanes react with acyl halides in the presence of a catalytic amount of Pd(PPh3)4 and CuI cocatalyst to give stereoselectively the corresponding (Z)‐α‐arylsulfanyl‐α,β‐unsaturated ketones in good yields. © 2009 Wiley Periodicals, Inc. Heteroatom Chem 20:218–223, 2009; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20536  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号