首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Single crystals of (4‐ClC7H6NH3)9[Nd(P6O18)2]·9H2O were synthesized in aqueous solution. This compound crystallizes in a triclinic P1 unit‐cell, with a = 14.898(6), b = 18.049(7), c = 20.695(6)Å, α = 102.04(3), β = 100.49(3), γ = 98.82(3)°, V = 5245(4) Å3 and Z = 2. The crystal structure has been solved and refined to R = 0.043 (Rw = 0.061) for 20420 observed reflections. The atomic arrangement of the title compound can be described as infinite layers built by complex of Neodyme [Nd(P6O18)2] and nine water molecules. The organic cations are located in the space delimited by the successive inorganic layers. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
Two potassium lanthanide zirconium orthophosphates with general composition K1.822Nd0.822Zr1.178(PO4)3 (KNdZrP) and K2LuZr(PO4)3 (KLuZrP) were prepared using the flux technique. Original synthetic procedure has been examined for the flux growth of the complex phosphates containing zirconium and lanthanide. Both compounds have been synthesized in the complex melts containing at the same time potassium phosphates and transition metal fluorides. The structures were solved from the single crystal (KNdZrP) and powder (KLuZrP) X‐ray diffraction data. Both compounds are isotypic to langbeinite mineral and crystallize in cubic system (sp. gr. P213) with the cell parameters a = 10.3228(2) and a = 10.29668(5) Å respectively. The rigid framework is built up from the isolated [MO6] octahedra and [PO4] tetrahedra interlinked via vertices. The potassium cations are located in the large closed cavities of the framework. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
Single‐crystal of the CdGaCrSe(4‐X)S(X) system (x = 0; 1; 2; 3; 4) were grown by the chemical vapour‐phase transport technique. The crystals were obtaine by using CdCl2 as transporting agent for the composition with x = 1, and CrCl3 for those with x = 0; 2; 3 and 4. X‐ray powder diffraction analysis indicated that some of the samples crystallizes in the tetragonal system with space group I‐4 (CdGaCrSe3S , x = 1; CdGaCrSe2S2 , x = 2), or in a cubic system with space group Fd‐3m (CdGaCrSeS3, x = 3; CdGaCrS4, x = 4), however the sample of CdGaCrSe4 (x = 0) crystallizes in rhombohedral system. Magnetic measurements show significant changes in the magnetic interactions behaviour probably due to the anionic substitutions. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
Synthesis and crystal structure are described for pyridinium isopolymolybdate of chemical composition (C5H6N)2n[Mo4O13]n. The crystals are triclinic, space group P1, with the following unit‐cell parameters: a =8.2695(11) Å, b =10.544(4) Å, c =11.177(4) Å, α = 71.76(5)°, β = 89.68(3)°, γ = 78.79(3)°, V =906.4(4) Å3, Z = 2 (chemical formula (C5H6N)2[Mo4O13]), D calcd = 2.755 g·cm–3. Crystal structure was solved by Patterson methods and refined to a final R value 0.085 for 4045 independent reflections. The studied compound, considered in analogy to triclinic (NH4)2Mo4O13 as pyridinium polyoctamolybdate, is proposed to be better described as pyridinium isopolytetramolybdate (C5H6N)2n[Mo4O13]n. It seems that the proper coordination number of molybdenum (VI) ions is five, resulting in pyramidal coordination polyhedra [MoO5]. Coordination polyhedra joined by common edges form tetramolybdate monomeric unit [Mo4O13]. The mers are connected by oxygen bridges Mo ‐ O ‐ Mo into infinite ribbon chains. Each two infinite chains are hold together by weaker intermolecular interactions. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
The crystal structure of (H3N—(CH2)6—NH3)2H2V10O28 � 2 H2O consists of dihydrogendecavanadate anion with Ci symmetry, two 1,6‐hexanediammonium cations and two water molecules. The structure has a P space group symmetry with one of the cations in special position; this cation is disordered. The polyanion of most usual protonation type is similar as formed in other known dihydrogendecavanadates.  相似文献   

6.
The new compound, [CuCl(phen)2]3H3V10O28 · 7 H2O, was prepared by reaction of an aqueous KVO3 solution (pH 3) with an aqueous solution of CuSO4 · 5 H2O in which 1,10‐phenanthroline (phen) and KCl were added. The crystal structure of the compound was determined, and the proton position in H3V10O283– were calculated by the bond length/bond number method and also determined from difference electron density map. The protons are bound to colinearly arranged μ–OV2 and μ–OV3 groups which is the common protonation type in trihydrogen decavanadates. The structure crystallizes in P1 space group symmetry. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
Crystallization of high temperature self‐flux of system Na2O‐K2O‐TiO2‐P2O5 was investigated at different molar ratios (Na+K)/P = 0.9; 1.0 or 1.2 and Na/K = 1.0 or 2.0 over the temperature range 1000–650°C. The conditions of formation of complex phosphates K0.10Na0.90Ti2(PO4)3 (NASICON‐related) and K0.877Na0.48TiІІІ0.357TiІV1.643(PO4)3 (langbeinite‐related) have been established. The new obtained compounds were investigated using FTIR‐spectroscopy, powder and single crystal X‐ray diffraction and optical microscopy methods. The influence of alkaline metal nature on the structure formation of complex phosphates in the high temperature self‐fluxes is discussed.  相似文献   

8.
The crystal structures of silver(I) sulphate, Ag2SO4, have been investigated as a function of temperature. A main feature is the phase transition from the low‐temperature ordered phase, F ddd, to the high‐temperature disordered phase, . In particular, the high‐temperature structure is solved from single crystal synchrotron X‐ray measurements. In this phase the title compound undergoes a colossal (anisotropic) thermal expansion of . This is presumably owing to a high anisotropic vibration state of one of the two crystallographically independent Ag‐atoms. Simultaneously occurring high ionic conductivity may be associated with silver ions moving along the ‐axis using a “paddle‐wheel” assisted percolative mechanism. Onset of metallic silver in the single crystals is documented, seemingly dependent on thermal pre‐history, mosaic structure and chemical synthesis. Possible mechanisms explaining this effect, comprising disproportionation or photo‐decomposition, are suggested.  相似文献   

9.
The crystal structure of [{Co(phen)2}2V4O12] · H2O consists of hexanuclear bimetallic clusters [{Co(phen)2}2V4O12]. The cyclic [V4O12]4‐ anion acts as a bidentate bridging ligand between the two [Co(phen)2]2+ cations. The π‐π stacking interactions between the parallel 1,10‐phenantroline (phen) groups play a significant role in stabilizing this structure. The title compound crystallizes in the P21/c space group.  相似文献   

10.
The mono‐hydrate phase as well as the water‐free RbD2PO4 (DRDP) is obtained by crystal growth from fully deuterated aqueous solution. Its crystal structure was determined by combined neutron and X‐ray single crystal diffraction. It consists of double layers of PO4 tetrahedra with D2O planes in between. The PO4 groups are linked by fully ordered deuterium bonds O‐D‐O. RbD2PO4.D2O dehydrates below 329(5)K and undergoes a phase transition to RbD2PO4 (DRDP).  相似文献   

11.
A new type of trirubidium nonahydrogen tetraphosphate, Rb3H9(PO4)4, crystal has been crystallized. Differential scanning calorimetry (DSC) and X‐ray diffraction measurements have been performed on the title compound. The crystal does not undergo any structural phase transition in the temperature range from 120 to 440 K except a melting transition at 399 K. The compound belongs to a monoclinic system with space group C2/c at room temperature. The structure is built on a framework of PO4 tetrahedra linked by five types of OH‐O hydrogen bonds in the length range from 2.472(4) to 2.679(4) Å. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
The crystal structure of 1‐allyl‐5‐(4‐methylbenzoyl)‐4‐(4‐methylphenyl)pyrimidine‐2(1H)‐thione (C22H20N2OS) has been determined from three dimensional single crystal X‐ray diffraction data. The title compound crystallizes in the monoclinic space group P 21/c, with a = 10.6674(13), b = 10.1077(7), c = 17.9467(19) Å, β = 98.460(9)°, V = 1914.0(3) Å3, Dcalc = 1.251 g cm–3, Z = 4. In the title compound, the allyl group shows positional disorder. Molecules are linked by C‐H···O, C‐H···N and C‐H···S intermolecular interactions forming two‐dimensional network. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
The preparation and single crystal growth of bis(tetrabutylammonium)bis(4,5‐dithiolato‐1,3‐dithiole‐2‐thione)copper, (I), are described. The energy gap Eg of (I) is about 2.38 eV. The nonlinear optical susceptibility χ(3) is about 1.3×10‐3 esu at 1064 nm. The characterization of (I) has been performed by electronic absorption, infrared and X‐ray powder diffraction spectroscopy. The thermal behavior of (I) has been investigated by means of thermogravimetric analysis (TGA) and differential thermal analysis (DTA) measurements in air. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
Large crystals of La0.63Pb0.37Mn O3+δ with small La(Pb)‐ deficiency of about 0.005‐0.01 at.% were grown by high temperature solution growth method. The structure of the grown crystals was determined as rhombohedral with R‐3 space group by single‐crystal X‐ray diffractometry. The surface morphology of the crystals and the exact chemical composition was examined by scanning electron microscopy and energy dispersive X‐ray analysis methods, respectively. The IR‐transmission spectrum reveals the presence of Mn3+O6‐ and Mn4+O6‐ octahedra in the lattice of La0.63Pb0.37Mn O3+δ crystals. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
Single crystals of acid salt hydrates M I{M II[H(XO4)2](H2O)2}, where M I, M II, and X are K, Zn, and S (I); K, Mn, and S (II); Cs, Mn, and S (III); or K, Mn, and Se (IV), respectively, were synthesized and studied by X-ray diffraction analysis. Compounds I–IV (space group $P\bar 1$ ) are isostructural to each other and to hydrate KMg[H(SO4)2](H2O)2 (V) studied earlier. Structures I–V, especially, the M I-O, M II-O, and X-O distances and the O?H?O (2.44–2.48 Å) and Ow-H?O (2.70–2.81 Å) hydrogen bonds, are discussed.  相似文献   

16.
Crystals of the double sulfate CaMg2(SO4)3 have been obtained by solid‐state reactions of stoichiometric amounts of anhydrous CaSO4 and MgSO4 in sealed and evacuated silica tubes with chlorine gas as mineraliser. The crystal structure was determined from single crystal X‐ray diffractometer data [P 63/m, Z = 2, a = 8.3072(4), c = 7.3057(8) Å, R [F2 > 2σ (F2)] = 0.0317, wR (F2 all) = 0.0785, 476 structure factors, 33 variable parameters] and consists of distorted [CaO6] octahedra (3 symmetry), [MgO6] octahedra (3 symmetry) and SO4 tetrahedra (m symmetry) as single building units. The structure is made up of 1[CaO6/2] chains of face‐sharing [CaO6] octahedra that extend parallel to [001], alternating with columns of face‐sharing [MgO3/1O3/2]2 dimers. Both types of chains are linked via corner‐sharing with SO4 tetrahedra into a three‐dimensional framework structure. Although the compound crystallizes in a new structure type, it is topologically related to the NaZr2(PO4)3 (Nasicon) structure, and a comparative discussion between both structural arrangements is given. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
A terbium complex associating two ligands, oxalate and glutarate, was prepared under hydrothermal conditions at 200°C by treating an aqueous suspension of terbium oxalate decahydrate with glutaric acid and guanidinium carbonate. Its structure was solved by X-ray diffraction on a single crystal. It crystallizes in the monoclinic space group P21 with lattice constants, a = 9.514(1) Å, b = 9.0681(8) Å, c = 19.702(2) Å, and = 97.90(1)°. The terbium atoms and the oxalate ligands build dense chains which are connected by one side of the carboxylic group of some glutarate ligands, thus forming a sheet at the c level 0 and 1/2. These sheets are bridged by glutarate groups. The terbium atoms are ninefold coordinate with nine oxygen atoms of the ligands or with one water molecule and eight oxygen atoms of the ligands. Each polyhedron of the terbium atoms share one edge and one face of oxygen atoms with the two neighboring ones. The oxalate ligands are bischelating and bismonodentate. The coordination scheme of glutarate differs: either they are bismonodentate from one side and chelating and monodentate from the other side or they are chelating and monodentate from both sides.  相似文献   

18.
Zirconium‐doped KTiOPO4 (KTP) crystals were grown using a high temperature flux method in the K2O‐P2O5‐TiO2‐ZrF4 system. The dopant content in the single crystals with general composition KTi1‐xZrxOPO4 (where x = 0 – 0.026) strongly depends on zirconium concentration in the homogeneous melts. AES‐ICP method and X‐ray fluorescence analysis were used to determine the composition of the obtained crystals. Phase analyses of the products were performed using the powder XRD. The structures of KTiOPO4 containing different quantities of Zr were refined on the basis of single crystal XRD data. Applying ZrF4 precursor for zirconium injection into the flux allowed growing the zirconium‐doped KTP crystals at 930–750°C. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
Single crystals of CdGa2(1‐x)Cr2xSe4 compounds for 0 ≤ x ≤ 1 have been grown by using the chemical vapor transport technique in a closed system. The transporting agent was CdCl2 in a proportion of 0.75 mg/cc of capsule. The starting material was previously synthetized. The structural characterization on the crystals were done by powder x‐ray diffraction studies. The results show three different phases for various Cr concentration ranges: spinel structure for x ≥ 0.7, rombohedral for 0.6 ≥ x ≥ 0.5 and tetragonal for 0.4 ≥ x ≥ 0. That is, the chromium dilution in the CdCr2Se4 compound by Ga atoms produces very significant changes in the structural atomic arrangement. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
An x‐ray diffraction method (XRD) for quantitative determination of the crystalline Na5P3O10‐I (Form‐I) in a mixture of Form‐I/Form‐II was applied for commercial pentasodium tripolyphosphate analysis. The XRD pattern of the Form‐I shows the unique non‐overlapping 2θ peak at a position of ≈ 21.8 deg. and also at ≈ 29.0 deg. (Cu radiation). The area (integral of the intensity) under the peaks is proportional to the amount of the Form‐I in the mixture covering the range up to 100 wt.%. That enables one to obtain a calibration line and to determine the amount of Form‐I in the mixture of Form‐I/Form‐II and also in commercial pentasodium tripolyphosphate. Commercial samples with high Form‐I concentration, in case they are contaminated with sodium pyrophosphate (Na4P2O7), should be diluted with Form‐II to bring the concentration of the Form‐I below 50 wt.% in the analysed sample.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号