首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The reaction of 2‐amino‐4,5‐dimethyl‐ thiophene‐3‐carboxamide with iso(and isothio) cyanates for the synthesis of thieno[2,3‐d]pyrimidines has been investigated. The reactions under microwave irradiation in the presence of N,N‐dimethyl acetamide as solvent gave 5,6‐dimethylthieno[2,3‐d]pyrimidine‐2,4(1H,3H)‐dione, 5,6‐dimethyl‐2‐thioxo‐2,3‐dihy‐ drothieno[2,3‐d]pyrimidin‐4(1H)‐one, and 2‐aryla‐ mino‐5,6‐dimethylthieno[2,3‐d]pyrimidin‐4(3H)‐one derivatives. These reactions probably proceed through intermediates 4,5‐dimethyl‐2‐substitutedcarbamoth‐ ioylaminothiophene‐3‐carboxamides. Two of these intermediates were isolated. © 2009 Wiley Periodicals, Inc. Heteroatom Chem 20:346–349, 2009; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20557  相似文献   

2.
The title compounds substituted 2‐lactosylthiothieno[2,3‐d]pyrimidin‐4‐ones 6 were synthesized by the glycosyl reaction and alcoholysis reaction of substituted 2‐thioxo‐thieno[2,3‐d]pyrimidin‐4‐ones 4 ,which is formed by the base catalytic and acetic acidify reaction of amino esters 2 with alkyl or arylisothiocyanates and hepta‐O‐acetyl‐lactosyl bromide in good yields. All of the compounds were confirmed by NMR, ESI‐MS, and elemental analysis.  相似文献   

3.
Bridgehead nitrogen heterocycles 3a , b and 6a , b containing the thieno‐pyrimidine system have been prepared from the versatile intermediates 3‐amino‐2,3‐dihydro‐5,6‐dimethyl‐2‐thioxo‐thieno[2,3‐d]pyrimidin‐4‐(1H)‐one 1 and its hydrazinium or potassium salts 4 ; their structural elucidation is also reported.  相似文献   

4.
2‐Thioxo‐5,7‐dimethylpyrido[2,3‐d]pyrimidin‐4(3H)‐ones 3 were synthesized by the cyclocondensation of 2‐amino‐3‐carbethoxy‐4,6‐dimethylpyridine 1 with methyl‐N‐aryldithiocarbamates 2 and compared with the condensation between 1 and aryl isothiocyanates 4. When a comparative study of N vs S alkylation of ambident 2‐thioxo‐5,7‐dimethylpyrido[2,3‐d]pyrimidin‐4(3H)‐ones 3 was carried out under liquid‐liquid and solid‐liquid phase transfer conditions using various alkylating agents 5 , the S‐alkylated products 6 were obtained exclusively and selectively.  相似文献   

5.
The starting materials pyridine‐2(1H)‐thiones are prepared and reacted with halogen‐containing reagents in ethanolic sodium acetate solution to give the corresponding 2‐S‐alkylpyridines, which cyclized upon their boiling in methanolic sodium methoxide solution at reflux to give the corresponding thieno[2,3‐b]pyridines in excellent yields. Bis (thieno[2,3‐b]pyridine‐2‐carboxamides), incorporating 2,6‐dibromophenoxy moiety, are prepared by the bis‐O‐alkylation of thieno[2,3‐b]pyridine‐2‐carboxamide derivatives. Two synthetic routes are designed to prepare the target molecules pyrido[3′,2′:4,5]thieno[3,2‐d]pyrimidin‐4(3H)‐ones, pyrido[3′,2′:4,5]thieno[3,2‐d][1,2,3]triazin‐4(3H)‐ones, and their bis‐analogues using thieno[2,3‐b]pyridine‐2‐carboxamides and their bis‐analogues. The structure of the target molecules is elucidated using elemental analyses as well as spectral data.  相似文献   

6.
Electrophilic heterocyclization of 5‐alkenyl‐1‐methyl‐6‐thioxopyrazolo[3,4‐d]pyrimidin‐4‐ones and 3‐alkenyl‐2‐thioxoquinazoline‐4‐ones under the action of p‐alkoxyphenyltellurium trichloride leads to annulation of thiazoline cycle with formation of 7‐[(p‐alkoxyphenyl)telluromethyl]‐1‐methyl‐6,7‐dihydropyrazolo[3,4‐d][1,3]thiazolo[3,2‐a]pyrimidin‐4(1H)‐ones hydrochlorides and 2‐(p‐alkoxyphenyl)dichlorotelluromethyl‐2,3‐dihydro ‐ 5H‐[1,3]thiazolo[2,3‐b]quinazolin‐5‐ones hydrochlorides. Reduction of salts by the action of excess of sodium sulfite leads to formation of arylhetaryl telluride.  相似文献   

7.
Tandem aza‐Wittig reaction of iminophosphorane with 1, 4‐phenylene diisocyanate followed by intramolecular heteroconjugate addition annulation after addition of a nucleophilic reagent (amine, phenol, and alcohol), in the presence of catalytic K2CO3 or NaOR, gives selectively the functionalized substituted 2, 2′‐di(alkylamino, aryloxy)‐3, 3′‐(1, 4‐phenylene)bis(thieno[3, 2‐d]pyrimidin‐4(3H)‐ones) and 2, 2′‐di(alkylamino or alkoxy)‐3, 3′‐(1, 4‐phenylene)bis(3, 5, 6, 7‐tetrahydro‐4H‐cyclopenta[4, 5]thieno[2, 3‐d]pyrimidin‐4‐ones).  相似文献   

8.
The reaction involving 4‐phenyl‐octahydro‐pyrano[2,3‐d]pyrimidine‐2‐thione, ethyl chloroacetate and the appropriate aromatic aldehyde yielded 2‐arylmethylidene‐5‐phenyl‐5a,7,8,9a‐tetrahydro‐5H,6H‐pyrano[2,3‐d][1,3]thiazolo[3,2‐a]pyrimidin‐3(2H)‐ones. The 1,3‐dipolar cycloaddition of 2‐arylmethylidene‐5‐phenyl‐5a,7,8,9a‐tetrahydro‐5H,6H‐pyrano[2,3‐d][1,3]thiazolo[3,2‐a]pyrimidin‐3(2H)‐ones with azomethine ylide generated by a decarboxylative route from sarcosine and acenaphthenequinone afforded 4′‐aryl‐1′‐methyl‐5″‐phenyl‐5a″,7″,8″,9a″‐tetrahydro‐2H,5″H,6″H‐dispiro[acenaphthylene‐1,2′‐pyrrolidine‐3′,2″‐pyrano[2,3‐d][1,3]thiazolo[3,2‐a]pyrimidine]‐2,3″‐diones in moderate yields. The structures of the products were determined and characterized thoroughly by NMR, MS, IR, elemental analysis, and X‐ray crystallographic analysis.  相似文献   

9.
2‐Amino‐3‐cyano‐4,5,6,7‐tetrahydrobenzo[b]thiophene 1a or 2‐amino‐3‐cyano‐4,7‐di‐ phenyl‐5‐methyl‐4H‐pyrano[2,3‐c]pyrazole 2a reacted with phenylisocyanate in dry pyridine to give 2‐(3‐phenylureido)‐3‐cyanobenzo[b]thiophene 1b or 2‐disubstituted amino‐3‐cyanopyranopyrazole 2b derivative. However, when 1a and 2a were refluxed with carbon disulfide in 10% ethanolic sodium hydroxide solution, they afforded the thieno[2,3‐d]pyrimidin‐2,4‐dithione derivative 5 in the former case, 2,4‐dicyano‐1,3‐bis(dithio carboxamino)cyclobuta‐1,3‐ diene 6 and pyrazolopyranopyrido[2,3‐d]pyrimidin‐ 2,4‐dithione derivative 7 in the latter one. Treatment of 2a with thiourea in refluxing ethanol in the presence of potassium carbonate gave 2,2′‐dithiobispyrimidine derivative 9 (major) in addition to pyranopyrazole derivative 10 and 2,2′‐dithiobis ethoxypyrimidine derivative 11 in minor amounts. The structures of all products were evidenced by microanalytical and spectral data. © 2005 Wiley Periodicals, Inc. Heteroatom Chem 16:6–11, 2005; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/hc.20070  相似文献   

10.
Derivatives containing the thieno[2,3‐d]pyrimidin‐4‐one system, potential selective COX‐2 inhibitors, were prepared starting from ethyl ester of 2‐isothiocyanato‐5‐phenyl‐3‐thiophenecarboxylic acid ( 2 ); their structural elucidation is also reported.  相似文献   

11.
The isomeric 2‐substituted‐7(5)‐methyl‐2,3‐dihydro‐5(7)H‐oxazolo[3,2‐a]pyrimidin‐5‐ones 3a‐b and 7‐ones 2a‐b,7a were synthesized by cyclocondensation from the 5‐substituted‐2‐amino‐2‐oxazolines 1a‐b with biselectrophiles. In boiling ethanol, the reaction of 1a‐b with acetylenic esters led to a mixture of 2a‐b,7a with a small amount of (E)‐2‐N‐(2‐ethoxycarbonylethylene)‐5‐substituted‐2‐iminooxazolines 5a‐b . The ring annulation between 1a‐b and diketene gave the 2‐substituted‐7‐hydroxy‐7‐methyl‐2,3,6,7‐tetrahydro‐5H‐oxazolo[3,2‐ a ]pyrimidin‐5‐ones 4a‐b which can be easily dehydrated to provide the 2‐substituted‐7‐methyl‐2,3‐dihydro‐5H‐oxazolo[3,2‐a]pyrimidin‐5‐ones 3a‐b .  相似文献   

12.
Pyridine‐2(1H)‐thiones were prepared and reacted with several active halogenated reagents to afford novel thieno[2,3‐b]pyridines in excellent yields. Thieno[2,3‐b]pyridine‐2‐carbohydrazide derivative was prepared by the reaction of either ethyl 2‐((3‐cyanopyridin‐2‐yl)thio)acetate derivative or thieno[2,3‐b]pyridine‐2‐carboxylate derivative with hydrazine hydrate. On the other hand, the reaction of either pyridine‐2(1H)‐thione or ethyl 2‐((pyridin‐2‐yl)thio)acetate derivative with hydrazine hydrate afforded the corresponding 1H‐pyrazolo[3,4‐b]pyridine derivative. Thieno[2,3‐b]pyridine derivatives reacted with several reagents to afford the corresponding pyrimidine‐4(3H)‐ones and [1,2,3]triazin‐4‐(3H)‐one. Moreover, 2‐carbohydrazide derivative reacted with β‐dicarbonyl reagents to give 2‐((3‐methyl‐1H‐pyrazol‐1‐yl)carbonyl)thienopyridines. The structure of the target molecules is elucidated using elemental analyses and spectral data.  相似文献   

13.
A series of new 2‐substituted 3‐(4‐chlorophenyl)‐5,8,9‐trimethylthieno[3′,2′: 5,6]pyrido[4,3‐d]pyrimidin‐4(3H)‐ones 8 were synthesized via an aza‐Wittig reaction. Phosphoranylideneamino derivatives 6a or 6b reacted with 4‐chlorophenyl isocyanate to give carbodiimide derivatives 7a or 7b , respectively, which were further treated with amines or phenols to give compounds 8 in the presence of a catalytic amount of EtONa or K2CO3. The structure of 2‐(4‐chlorophenoxy)‐3‐(4‐chlorophenyl)‐5,8,9‐trimethylthieno[3′,2′: 5,6]pyrido[4,3‐d]pyrimidin‐4(3H)‐one ( 8j ) was comfirmed by X‐ray analysis.  相似文献   

14.
Diethyl azodicarboxylate and 3,4,5,6‐tetrachloro‐1,2‐benzoquinone react with cyclopentano‐ and cycloheptano‐fused thienopyrimidines to form the oxidative dimer of the starting material via S—S bond formation. Reaction of two equivalents of 2,2′‐(cyclohexa‐2′,5′‐diene‐1,4‐diylidene)dimalononitrile with thienopyrimidines afforded 3‐(4′,4′‐dicyanomethylene‐cycloalka[a]‐2,5‐dienyl)‐4‐oxo‐6,7,8,9‐tetrahydro‐5H‐cyclo‐hepta[4,5]‐[1,3]thiazolo[3,2‐a]‐thieno[2,3‐d]pyrimidin‐2‐ylidene‐2‐dicarbonitriles. The thioenopyrimidines react with 2‐[1,3‐dioxo‐1H‐inden‐2(3H)‐ylidene]malononitrile to produce 1,3,5′‐trioxo‐1,3,3′,5′‐tetrahydrospiro‐(indene‐2,2′‐thiazolo[2,3‐b]‐cycloalkyl[b]‐thieno[2,3‐d]pyrimidine)‐3′‐carbonitriles. However, the reaction of thienopyrimidines with 2,3‐dicyano‐1,4‐naphthoquinone proceeded to afford the fused cycloalkyl‐thieno form of naphtho[1,3]thiazolo[3,2‐a]thieno[2,3‐d]pyrimidine‐6.7,12‐triones. Reaction of 2‐hydrazino‐5,6,7,8‐tetrahydrobenzo[b]thieno[2,3‐d]pyrimidine‐4(1H)‐one with dimethyl acetylenedicarboxylate and ethyl propiolate, respectively, afforded cyclohexano‐fused (Z)‐dimethyl 2[(E)‐4‐oxo‐3,4‐dihydrothieno[2,3‐d]pyrimidine‐2(1H)‐ylidene)hydrazono]succinate and thieno‐pyrimidinotriazine. Both oxidative dimers of thienopyrimidines showed high inhibition of Hep‐G2 cell growth compared with the growth of untreated control cells. Moreover, the cycloheptano‐fused thiazinothienopyrimidine indicates a promising specific antitumor agent against Hep‐G2 cells because its IC50 is < 20 μM.  相似文献   

15.
[2‐Alkylthio‐6‐methyl‐4‐oxopyrimidin‐3(4H)‐yl]acetonitriles ( 3‐5 ) treated with sodium methoxide in methanol followed by ammonium chloride were cyclized to 2‐imino‐7‐methyl‐2,3‐dihydroimidazo[1,2‐a]‐pyrimidin‐5(1H)‐ones ( 6‐8 ). Under acid or base‐catalyzed hydrolysis they were converted to 7‐methyl‐imidazo[1,2‐a]pyrimidine‐2,5‐[1H,3H]‐diones ( 9‐11 ), whereas in the reaction with butyl‐ or benzylamine the corresponding 7‐methyl‐2‐(substitutedamino)imidazo[1,2‐a]pyrimidin‐5(3H)‐ones ( 13‐18 ) were produced. The latter were found to exist in two tautomeric forms in CDCl3 solution.  相似文献   

16.
An efficient and environmentally benign one‐pot method has been developed for the synthesis of 4‐amino‐5‐arylpyrrolo[2,3‐d]pyrimidines. Phthalimido acetophenones were reacted with cyanoacetamide to give 2‐amino‐4‐phenyl‐1H‐pyrrole‐3‐carboxamides, which were further converted to 5‐aryl‐3H‐pyrrolo[2,3‐d]pyrimidin‐4‐ones. A novel method is also developed for the synthesis of 4‐amino‐5‐iodopyrrolo[2,3‐d]pyrimidines.  相似文献   

17.
New series of (thieno[2,3‐c]pyrazolo‐5‐yl)‐[1,2,4]triazolo[3,4‐b][1,3,4]thiadiazoles 10a , 10b , 10c and (thieno[2,3‐c]pyrazol‐5‐yl)‐1,3,4‐oxadiazol‐3(2H)‐yl)ethanones 6a , 6b , 6c has been synthesized from thieno[2,3‐c]pyrazole‐5‐carbohydrazide 3 by multistep reaction sequence. (5‐Aryl‐1,3,4‐oxadiazol‐2‐yl)‐1H‐thieno[2,3‐c]pyrazoles 4a , 4b , 4c were also synthesized from thieno[2,3‐c]pyrazole‐5‐carbohydrazide 3 by cyclization with various aromatic carboxylic acids. The hydrazide 3 was obtained by reaction of thieno[2,3‐c]pyrazole‐5‐carboxylate 2 with hydrazine hydrate in good yield, and compound 2 was obtained by the reaction of 5‐chloro‐3‐methyl‐1‐phenyl‐1H‐pyrazole‐4‐carbaldehyde 1 and 2‐ethyl thioglycolate in presence of sodium alcoholate in good yield.  相似文献   

18.
The butylidene‐linker models 1‐[2‐(2,6‐dimethylsulfanyl‐9H‐purin‐9‐yl)‐2‐methylidenepropyl]‐4,6‐bis(methylsulfanyl)‐1H‐pyrazolo[3,4‐d]pyrimidine, C18H20N8S4, (XI), 7,7′‐(2‐methylidenepropane‐1,3‐diyl)bis[3‐methyl‐2‐methylsulfanyl‐3H‐pyrrolo[2,3‐d]pyrimidin‐4(7H)‐one], C20H22N6O2S2, (XIV), and 7‐[2‐(4,6‐dimethylsulfanyl‐1H‐pyrazolo[3,4‐d]pyrimidin‐1‐yl)‐2‐methylidenepropyl]‐3‐methyl‐2‐methylsulfanyl‐3H‐pyrrolo[2,3‐d]pyrimidin‐4(7H)‐one, C19H21N7OS3, (XV), show folded conformations in solution, as shown by 1H NMR analysis. This folding carries over to the crystalline state. Intramolecular π–π interactions are observed in all three compounds, but only (XIV) shows additional intramolecular C—H...π interactions in the solid state. As far as can be established, this is the first report incorporating the pyrrolo[2,3‐d]pyrimidine nucleus for such a study. In addition to the π–π interactions, the crystal structures are also stabilized by other weak intermolecular C—H...S/N/O and/or S...N/S interactions.  相似文献   

19.
Nine novel nonclassical 2,4‐diamino‐6‐methyl‐5‐mioarylsubstituted‐ 7H ‐pyrrolo[2,3‐d]pyrimidines 2‐10 were synthesized as potential inhibitors of dihydrofolate reductase and as antitumor agents. The analogues contain various electron donating and electron withdrawing substituents on the phenylsulfanyl ring of the side chains and were synthesized from the key intermediate 2,6‐diamino‐6‐methyl‐7H‐pyrrolo[2,3‐d]‐pyrimidine, 14 . Compound 14 , was in turn obtained by chlorination of 4‐position of 2‐amino‐6‐methylpyrrolo[2,3‐d]pyrimidin‐4(3H)‐one, 16 followed by displacement with ammonia. Appropriately substituted phenyl thiols were appended to the 5‐position of 14 via an oxidative addition reaction using iodine, ethanol and water. The compounds were evaluated against rat liver, rat‐derived Pneumocystis, Mycobacterium avium and Toxoplasma gondii dihydrofolate reductase. The most potent and selective inhibitor, (2) has a 1‐naphthyl side chain. In this series of compounds electron‐withdrawing and bulky substituents in the side chain afford marginally active dihydrofolate reductase inhibitors. The single atom sulfur bridge in the side chain of these compounds is not conducive to potent dihydrofolate reductase inhibition.  相似文献   

20.
2‐Amino‐3‐cyano‐4,6‐disubstituted pyridines 2a–c on treatment with arylisocyanate and arylisothiocyanate afforded 4‐imino‐3,5,7‐trisubstituted pyrido[2,3‐d] pyrimidin‐2(1H)‐ones 3a–c and 4‐imino‐3,5,7‐trisubstituted pyrido[2,3‐d]pyrimidin‐2(1H)‐thiones 4a–c , respectively. The ribofuranosides, namely, 4‐imino‐3,5,7‐trisubstituted‐1‐(2′,3′,5′‐tri‐O‐benzoyl‐β‐d ‐ribofuranosyl) pyrido[2,3‐d]pyrimidin‐2(1H)‐ones 7a–c and 4‐imino‐3,5,7‐trisubstituted‐1‐(2,3,5‐tri‐O‐benzoyl‐β‐D‐ribofuranosyl) pyrido[2,3‐d]pyri‐midin‐2(1H)‐thiones 8a–c , were synthesized by the condensation of trimethylsilyl derivatives of 3a–c and 4a–c with β‐d ‐ribofuranosyl‐1‐acetate‐2,3,5‐tribenzoate. The structure of newly synthesized ribofuranosides and their precursors were established by elemental analyses, IR, 1H NMR and 13C NMR spectroscopy. All the synthesized compounds were screened for their antibacterial and antifungal activities against Escherichia coli, Staphylococcus aureus, Aspergillus niger, and Aspergillus flavus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号