首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Published data on aggregation kinetics of sodium chloride crystals at its spontaneous crystallization from supersaturated aqueous‐ethanol solutions were analysed. It was found that the crystals coalesced through contact nucleus‐bridges between them according to the mechanism proposed by Polak. The kinetics of aggregation were described by the Smoluchowski equation for coagulation of colloidal particles. The kinetic coefficient of aggregation process depended on supersaturation, temperature of solution and other characteristics of the system. The specific surface energy of sodium chloride 0.95 mJ/m2 was found. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
A model of spontaneous crystallization process was proposed. The model describes kinetics of the crystallization process after the end of the induction period. To test the model the published earlier data on crystallization and aggregation kinetics of potassium chloride at its spontaneous crystallization from supersaturated aqueous and aqueous‐ethanol solutions were used. It was found excellent coincidence of the experimental and theoretical data on concentration of the salt and the total number of crystals in solution at crystallization. Somewhat change for the worse was at the theoretical calculations of crystal size distribution at the end of the crystallization process. It indicated that the ways of calculation of size of crystals and their weight fraction in deposit were very approximate. The model allows predicting with satisfactory accuracy kinetics of crystallization using such general parameters of potassium chloride as the specific surface energy and the height of the nucleus‐bridges between crystals at coalescence. It needs further test of the model for other salts. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
In the present work the examination of the proposed earlier model of spontaneous crystallization process was done. The model describes kinetics of the crystallization process after the end of the induction period. To test the model the published data on crystallization and aggregation kinetics of sodium chloride at its spontaneous crystallization from supersaturated aqueous‐ethanol solutions were used. It was found an excellent coincidence of the experimental and theoretical data on concentration of the salt and the total number of crystals in solution at crystallization. The model allows predicting with satisfactory accuracy kinetics of crystallization using such general parameters of sodium chloride as the specific surface energy and the height of the nucleus‐bridges between crystals at coalescence. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
The kinetics of spontaneous crystallization of sodium chloride from aqueous‐ethanol solutions were studied. During the crystallization the electrical conductance and optical transmission of the supersaturated solutions were measured automatically. For monitoring of the total surface of growing potassium chloride crystals at the crystallization the turbidimetric method was used. The growth rate and activation energy were determined. The crystal growth rate was proportional to supersaturation. When the volume fraction of ethanol in solution increased from 14.85 to 29.72%, the activation energy of the growth process did not change and was about 50 kJ· mol‐1. Aggregation of the crystals was found. The aggregation kinetics of the crystals may be described approximately by the famous Smoluchowski equation for coagulation of colloidal particles. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
Kinetics of spontaneous crystallization of potassium chloride from aqueous and aqueous‐ethanol solutions were studied. During the crystallization of the salt the electrical conductance and optical transmission of the supersaturated solutions were measured automatically. For monitoring of the total surface of growing potassium chloride crystals at the crystallization the turbidimetric method was used. The growth rate and activation energy of the crystals were determined. The crystal growth rate was proportional to supersaturation. When the volume fraction of ethanol in the solution increased from 0 to 25.76%, the activation energy of the growth process did not change and was about 60 kJ·mol‐1. Aggregation of the crystals was found. The aggregation kinetics of the crystals may be described approximately by the famous Smoluchowski equation for coagulation of colloidal particles. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
The isothermal and non‐isothermal crystallization behaviors of asymmetric poly(L‐ lactic acid‐ co‐ glycolic acid) (PLLGA)/poly(D‐lactic acid) (PDLA) blends was investigated at PDLA loadings of up to 10 wt%. A simple solvent‐casting procedure, was developed for the preparation of PLLGA/PDLA stereocomplex crystallites dispersed in a PLLGA matrix. The formation of stereocomplexes in the PLLGA matrix was verified by differential scanning calorimetry (DSC) and X‐ray diffraction (XRD). Non‐isothermal crystallization measurement demonstrated that the addition of PDLA significantly accelerates the crystallization of PLLGA. Subsequent assessment of the influence of PDLA content on the isothermal crystallization kinetics of PLLGA by the Avrami equation confirmed that the crystallization rate of PLLGA is enhanced by the addition of PDLA contents, with a reduction in the half crystallization time (t1/2) and increase in the crystallization rate constant (k) values. A PDLA content of 1–7 wt% was found to particularly enhance the crystallization rate of PLLGA, from which it is inferred that the PLLGA/PDLA stereocomplex crystals act as effective nucleus to enhance the crystallization of PLLGA.  相似文献   

7.
Barium chromate (BaCrO4) microcrystals with various morphologies such as shuttle‐like, x‐shaped, ellipsoid, leaf‐like crystals were synthesized from aqueous solutions using poly (sodium 4‐styrenesulfonate) (PSS) as template agent at room temperature. The characterization results show that pH values and concentrations of reactants and PSS are important parameters in the morphology and size evolution of BaCrO4. The possible formation mechanism of BaCrO4 crystals with different morphologies was proposed. PSS complexes Ba2+ first, then affects the nucleation and crystallization process by interacting with the plane face of crystal, which finally results in various morphologies and sizes of crystals. In addition, the possible mechanism of photoluminescence (PL) spectra was also proposed.  相似文献   

8.
The mechanism of the formation of light-scattering centers in sapphire crystals grown by horizontal directed crystallization in gas atmospheres reducing with respect to the Al2O3 melt was studied. The experimental regularities here significantly differ from those observed upon formation of other conventional defects in sapphire crystals (vacancy pores, gas bubbles, and so on). It is shown that the known formation mechanisms of macroscopic ≥1 mm) inclusions in crystals are not acceptable in this case. Using the model of bulk crystallization is proposed to describe the obtained regularities.  相似文献   

9.
Oriented aggregation is an important, nonclassical crystal growth mechanism by which nanocrystals grow, defects are formed, and unique—often symmetry-defying—crystal morphologies can be produced. This growth mechanism involves the irreversible and crystallographically specific self-assembly of primary nanocrystals and results in the formation of new single crystals, twins, and intergrowths. This paper presents data showing that growth by oriented aggregation is consistent with second-order kinetics with respect to the concentration of the primary nanoparticles and demonstrates that the overall rate constant for growth by oriented aggregation increases dramatically with decreasing primary particle size. Results are discussed in the context of DLVO interactions. The experimental results explain the common observation that growth by oriented aggregation slows as a function of continued crystal growth.  相似文献   

10.
It is shown that during crystallization urea forms mixed crystals, adsorption mixed crystals, and epitaxial growth from aqueous solutions with inorganic salts, the lattice parameters of which are lying within the tolerance of efficiency parameters of urea. The extent of the formation of mixed crystals is determined by the composition of the solution. The slats added to the solution affect changes of tracht and habit of urea and thus are important for improving storage and transport properties. Similar results can be found for modified melts of urea.  相似文献   

11.
Polycrystalline spherulites of an aromatic amine derivative have been precipitated in a batch process by pH‐shift with hydrochloric acid from stirred aqueous solutions. The time dependent behaviour of the spherulites has been studied during crystallization in the temperature range from 5 °C to 60 °C. Cake resistance values have been obtained from batch filtration tests performed at 2 bar pressure difference at different stages of the crystallization process. The FBRM mean chord length of the crystals decreases with time as a result of crystal ageing into plate‐like crystals. The rate of the ageing process increases with temperature. XRD‐studies show no significant differences in the crystal structure during the ageing process, and the mechanism of the transformation was not established. The filterability of aromatic amine crystals deteriorates as the crystallization progresses. The decrease in the filterability is attributed to the appearance of small plate‐like crystals and a change in the interaction between the crystal surface and the solution, during the ageing of the particles. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
The studies of the rapid precipitation of magnesium hydroxide, from aqueous solutions of different concentrations by sodium, calcium and ammonium hydroxides, are analysed. The kinetics of nucleation and microcrystallite formation during the induction periods and the kinetics of crystal growth (onto the microcrystallites) to the final primary crystals are examined; the high final nucleus numbers and the sub-microscopic sizes of the final primary crystals are discussed according to Nielsen's theories.  相似文献   

13.
There are various organic and inorganic constituents in kidney stones. Among them, calcium oxalate monohydrate (COM) is the primary inorganic constituent of kidney stones. However, the mechanisms of formation of kidney stones are not well understood. In this regard, a basic study is carried out for better understanding of nucleation, crystal growth and/or aggregation of formed COM crystals. The primary nucleation of calcium oxalate monohydrate is studied at the laboratory scale using turbidity measurements. Calcium chloride and potassium oxalate solutions are mixed and then added to a Turbidimeter tube for continuous recording of turbidity. Induction time (time to induce formation of detectable crystals) is estimated from time‐turbidity graphs. The effect of some urinary species, such as oxalate and calcium, on nucleation and crystallization characteristics of COM is determined by particle size distribution analysis, measuring weight of crystals and calculation of relative supersaturation. The classical nucleation theory is applied at high supersaturation ratios (SR) ranging from 1.6 to 2.2. The results indicate that nucleation rate increases with increasing supersaturation ratio from 0.81 × 1028 nuclei/cm3.sec at 1.6 SR, to 18.02 × 1028 nuclei/cm3.sec at 2.2 SR. On the other hand, free energy change and radius of critical nucleus are decreased as supersaturation ratio is increased. The nucleation rates are higher than those reported in literature. Such discrepancy is discussed on the bases of differences in experimental techniques. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
Lysozyme crystallization was conducted in the ionic liquid (IL) 1‐butyl‐3‐methylimidizolium tetrafluoroborate ([BMIm][BF4]) with different buffer/IL proportions. It was found that the addition of [BMIm][BF4] could promote the crystallization process, during which more lager single crystals with controllable morphologies could be obtained due to the manageable crystal growth velocity. A probable explanation was proposed based on the influence of the ionic polarization and kinetics in the lysozyme crystallization. Moreover, the transform in coordination number and the relative growth rate of different crystal faces were discussed. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
The crystallizer of the Walker-Kohman type for isotherm growing of single crystals from solutions is described which has been designed to provide the maintenance of constant conditions of crystallization chosen in advance and the investigation of the influence of these conditions on the resulting structural regularity of the crystals as grown. The temperature of the solution can be kept inside the interval from 30 to 60°C, with an accuracy ±0.002°C. The equipment allows the setting and keeping the requested value of supersaturation, hydrodynamic conditions, thermal stabilization of the crystallization solution and enables the optic and gravimetric observing of the single crystal during its growth. The total function of the described equipment was tested by growing single crystals of triglycine sulphate at 52°C.  相似文献   

16.
In this paper, crystal growth of calcium carbonate (CaCO3) in the presence of biomolecules of lotus root was investigated. Scanning electron microscopy, Fourier transform infrared spectroscopy and X‐ray powder diffractometry were used to characterize the products. The results indicate that calcite spherical particles were constructed from small rhombohedral subunits. Similar CaCO3 crystals were also gained when crystal growth of CaCO3 in aqueous solution containing extracts of lotus root was performed, suggesting that the soluble biomolecules of lotus root play a crucial role in directing the formation of hierarchical calcite spherical particles. The possible formation mechanism of the CaCO3 crystals by using lotus root is also discussed, which can be interpreted by particle‐aggregation based non‐classical crystallization laws. The biomolecules of lotus root might induce and control the nucleation and growth of calcium carbonate crystals. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
The effects of salts on subtilisin crystallization were investigated. Three salts—NaCl, NaNO3 and NaSCN—were selected to study the effects of different anions on growth kinetics of three subtilisin mutants—Properase®, Purafect® and Purafect®OX. The effectiveness of salts in decreasing the solubility of Properase® and Purafect® subtilisin followed the reverse order of the Hofmeister series: SCN>NO3>Cl. The average length and diameter of crystals were measured during crystallization. The nature of salt changed the length/diameter ratio of crystals, indicating the changes in the relative growth rate of different crystal faces. The required supersaturation, (cs)/s, for a given growth rate increased in the order of NaCl, NaNO3 and NaSCN. The observed trend in required supersaturation indicates a kinetic effect and was counter to the trend for the solubility data. A rationale is provided based on the influence of ion binding and kinetics on the energetics of crystal growth and growth rate is correlated to the molar Gibbs free energy of hydration of the anion.  相似文献   

18.
The reproducibility of biomacromolecular crystallization (tetragonal and orthorhombic lysozyme crystals) was studied by monitoring the evolution of protein concentration during the crystallization process using Mach‐Zehnder interferometer. It was found that formation of both tetragonal and orthorhombic crystals exhibited poor reproducibility. When the crystallization occurred under isothermal conditions, the protein concentration in the solution varied differently in different experiments under identical conditions (for both types of crystals). Moreover, in the case of orthorhombic lysozyme crystallization (under either isothermal or thermal gradient conditions), it is clear that the crystals could not be always readily formed. When formation of tetragonal lysozyme crystals was conducted at a temperature gradient condition, however, the evolution of concentration was reproducible. The phenomena found in this study revealed that biomacromolecular crystallization can be uncertain, which is probably caused by the process of nucleation. Such uncertainties will be harmful for the efforts of screening crystallization conditions for biomacromolecules. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
The influence of the bacteria Bacillus subtilis (B. subtilis) on the nucleation, growth and aggregation of calcium oxalate (CaOx) crystals in aqueous solution has been studied. The crystals obtained were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy and X‐ray powder diffractometry. The results show that, in the presence of B. subtilis, quasi‐hexagonal calcium oxalate monohydrate (COM) crystals are obtained after 24 hours of reaction at a temperature of 30°C ± 1K. However, without the presence of the bacteria, irregular CaOx crystals were obtained which contain two crystal phases: COM and calcium oxalate dihydrate (COD). This suggests that B. subtilis may promote the crystallization of COM, the major component of urinary stone. The formation mechanism of CaOx crystals in the presence of B. subtilis is explored, indicating that the cell walls and extracellular proteins of the bacteria may act as templates to induce the nucleation, growth and aggregation of CaOx crystals. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
The results of three‐dimensional unsteady modeling of melt turbulent convection with prediction of the crystallization front geometry in liquid encapsulated Czochralski growth of InP bulk crystals and vapor pressure controlled Czochralski growth of GaAs bulk crystals are presented. The three‐dimensional model is combined with axisymmetric calculations of heat and mass transfer in the entire furnace. A comprehensive numerical analysis using various two‐dimensional steady and three‐dimensional unsteady models is also performed to explore their possibilities in predicting the melt/crystal interface geometry. The results obtained with different numerical approaches are analyzed and compared with available experimental data. It has been found that three‐dimensional unsteady consideration of heat and mass transfer in the crystallization zone provides a good reproduction of the solidification front geometry for both GaAs and InP crystal growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号