首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Single crystals of Sr2YRu1‐xCuxO6 with x=0 and x=0.1 were grown using PbO‐PbF2 based solutions at different temperatures in the range 1150–1350°C. The influence of Pb from the solutions and the Cu from the solid solutions of Sr2YRu1‐xCuxO6 on the resulting crystals was studied using microstructure and magnetic property measurements. The peaks in the powder X‐ray diffraction patterns and Raman spectra do not change in the case of x=0 crystals but shift in the presence of Cu. A diamagnetic transition indicative of superconductivity was observed in the presence of Cu and an antiferromagnetic behavior with x=0. Based on these results it is concluded that Pb may not be incorporated in the crystals and even if it does the influence is not observed. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
The mixed rare earth oxide (Dy1‐xErx)2O3 (0.0 ≤ x ≤ 1.0) were synthesized by a sol–gel process. X‐ray and neutron diffraction data were collected and crystal structure and microstructure analyses were performed using Rietveld refinement method. All samples were found to have the same crystal structure and formed solid solutions over the whole range of x. Preferential cationic distribution is found for all samples but with different extent with Dy3+ preferring the 8b among the two non‐equivalent sites 8b and 24d of the space group Ia3. The lattice parameter is found to vary linearly with the composition x and a systematic variation is found in the r.m.s microstrain . Magnetization measurements were done in the temperature range 5‐300 K and a behavior in accordance with Curie‐Weiss law was found. Anomalous concentration dependence is found in magnetic susceptibility which is ascribed to the concentration dependence of effective crystal field combined with the contribution of 4I15/2 and 6H15/2 manifold at elevated temperature. The effective magnetic moments μeff is found to decrease linearly with composition parameter x, except for sample x=0.5 where the magnetization is enhanced. The Curie‐Weiss paramagnetic temperatures indicated antiferromagnetic interaction. These magnetic results are discussed in view of the cationic distribution. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
The La212 type compounds substituted by silver or praseodymium are prepared by solid state reaction method. It is found that compounds La2‐xSrxCa0.5Pr0.5Cu2O6, La1.6Pr0.4Ca1‐xSrxCu2O6 and La2‐xPrxCa0.5Sr0.5Cu2O6 can be formed for x=0.4‐1.1, 0‐0.5 and 0‐1.5, respectively. A new member of La212 type compounds, La2‐xAgxCaCu2O6 is also prepared. Their structures are verified by Rietveld structure refinement to belong to the structure type of La212 cuprate oxide with space group I4/mmm. Their electrical properties are investigated. La1.65Ag0.35CaCu2O6 displays metal‐like behavior and its resistivity decreases with the decrease of temperature from 300K to 4.2K.  相似文献   

4.
A glass‐ceramic Bi1.7V0.3Sr2Ca2Cu3Ox superconductor was prepared by the melt‐quenching method. The compound was characterized by scanning electron microscopy, x‐ray diffraction, differential thermal analysis, current‐voltage characteristics, transport resistance measurements, and Hall effect measurements. Two main phases (BSCCO 2212 and 2223) were observed in the x‐ray data and the values of the lattice parameters quite agree with the known values for 2212 and 2223 phases. The glass transition temperature was found to be 426 °C while the activation energy for crystallization of glass has been found to be Ea = 370.5 kJ / mol. This result indicates that the substitution of vanadium increased the activation energy for the BSCCO system. An offset Tc of 80 K was measured and the onset Tc was 100 K. The Hall resistivity ρH was found to be almost field‐independent at the normal state. A negative Hall coefficient was observed and no sign reversal of ρH or RH could be noticed. The mobility and carrier density at different temperatures in the range 140‐300 K under different applied magnetic fields up to 1.4 T were also measured and the results are discussed. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
Room‐temperature magnetization hysterisis measurements were conducted on Mn0.5Zn0.5GdxFe(2‐x)O4 ferrite nanoparticles, with x = 0, 0.5, 1.0, 1.5. The structure of this ferrite is normal spinel where the added of Gd3+ ions occupied the octahedral sites and replaces Fe3+ ions. The saturation magnetization was found to increase with the initial addition of the Gd3+ ions followed by a sharp decrease with further addition of Gd3+ ions. The Curie temperature was found to increase up to Gd3+ concentration of x = 1.0, and then decreases at x = 1.5. These results were attributed to the surface spins. Because the size of Gd3+ ions is larger than that of Fe3+ ions, the substitution of Fe3+ ions with the Gd3+ ions results in surface disorder which results in surface spins. A core‐shell magnetization model was introduced where several factors were combined to explain our results. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
The magnetic and transport properties of polycrystalline YBa2 (Cu1‐xMx)3 O7‐δ (M = B and Mn) superconductor was investigated. Samples of YBa2(Cu1‐xBx)3O7‐δ doped with several concentrations of boron B(x = 0.05 and 0.1) were investigated using magnetization measurements. A YBa2(Cu1‐xMnx)3O7‐δ sample doped with Mn with concentration of x = 0.02 was investigated using current‐voltage (I‐V) measurements. Our results on the YBa2(Cu1‐xBx)3O7‐δ samples reveal a considerable increase in the hysterisis width of the magnetization, M versus the applied magnetic field H with increasing boron concentration. The lower critical field was also found to be enhanced by boron doping. The critical current density, Jc was found to be significantly enhanced in the Mn‐doped sample. The enhancement of Jc was found to be more significant at the lower temperatures for all applied magnetic fields used (0 Oe, 300 Oe, and 500 Oe). Thus, chemical doping is suggested to enhance the vortex pinning forces in the YBCO samples. From the resistivity (R‐T) measurements, chemical doping of the samples was found to have no significant effect on the critical temperature, Tc. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
In the manganite La1‐xMxMnO3 (M = Ca, Ba, Sr) the doping concentration introduces a mixed valency (Mn3+, Mn4+) which governs the magnetic and electrical properties of the compound. The perovskite oxides La1‐3xCaxBaxSrxMnO3 (x = 0.00, 0.05, 0.10) were prepared by chemical method. Single‐phase formation is confirmed by XRD studies. The electrical behavior of compositions with x = 0.00, 0.05 and 0.10 in the system La1‐3xCaxBaxSrxMnO3 was studied in the temperature range 300‐420 K. It is observed that conductivity decreases with increasing temperature as well as dopants concentration. Metallic behavior of these compositions decreases with increasing dopants concentration (x). The microstructures of these samples have been characterized using scanning electron microscopy (SEM). (© 2007 WILEY ‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
Single crystals of Ba2PrRu1–xCuxO6 with x = 0 to 0.2, have been grown from high temperature solutions of a mixture of PbO‐PbF2 in the temperature range 1100–1200 °C. Thin crystals with mostly a hexagonal and triangular plate like habit measuring up to 1–2 mm across and 0.1–0.2 mm thick were obtained. The size, quality and morphology of the crystals were improved by varying the solution volume as well as additives like B2O3. Large crystals measuring up to 3 mm across and 0.3 to 0.5 mm thick were obtained with 5–7 wt% solute concentration and 0.51 wt% of B2O3. The ZFC curves exhibit a spin glass like behavior with x = 0 and a superconducting transition at 8 to 11 K depending on x = 0.05 to 0.1. The transition was also influenced by the growth temperature and post growth annealing. Powder x‐ray diffraction, EDS and Raman spectroscopic measurements confirm the presence of Cu in the crystals. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
Lithium‐doped Tl‐based superconductor was prepared by adding an amount of 0.3 mol.% to the Tl1.8Ba2Ca2.2Cu3Ox compound. The usual solid‐state reaction method has been applied under optimum conditions. The x‐ray data of the sample show a tetragonal structure with a high ratio of Tl‐2223 superconducting phase. The sample showed a transition at 125 K and the zero resistance was observed at 117 K. Longitudinal (transport) and transverse (Hall) resistivities were measured at different temperatures under different magnetic fields and the data were interpreted. A positive Hall coefficient was observed at normal state and a sign reversal appears at temperatures lower than the critical temperature. (© 2003 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
The relationship between stoichiometry in YBa2Cu3Ox and oxygen potential was investigated by barometry and compared with in-situ X-ray diffraction experiments between 300 and 1000 °C (6 < x < 7). The physical properties are influenced even by small deviations in x. Y2BaCuO5 was included in the investigations and found to be antiferromagnetic with TN ≈ 30 K.  相似文献   

11.
Voltage‐current characteristics at four different applied magnetic fields (7, 20, 30, and 40 mT) of Bi2Sr2Ca2Cu3Ox superconducting tape were measured in the temperature range from 100 to 115 K. They were also measured at zero magnetic field before and after γ irradiations up to 10 MRad at different temperatures just below the critical temperature. The data were fitted to a power law expression V = I β(T) in which the exponential parameter β under 20 mT field and after irradiation is found to fluctuate around three and then drops to unity near the critical temperature which may be interpreted as a sign of Kosterlitz‐Thouless transition. The electrical properties of the tape were found to be very sensitive to γ irradiation where most of the changes take place in low γ doses. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
Dinuclear iron(III) derivative of Fe2L1(OCH3)Cl2 (L1=1,3‐bis[N‐(5‐bromo‐2‐hydroxybenzylidene)‐2‐aminoethyl]‐2‐(5‐bromo‐2‐hydroxyphenyl)imidazolidine) has been synthesized, its crystal structure determined and magnetically characterized. The title compound crystallizes in orthorhombic space group Pbcn with cell parameters a = 12.9770(10), 18.7930(10), 25.2950(10) Å, V = 6168.9(6)Å3, Z = 8, Dcal = 1.951 Mg/m3. The two iron(III) ions are asymmetrically bridged by a phenoxo and methoxo groups in the compound. The iron(III) centers are separated by 3.166(3) Å. Magnetic susceptibilities of the complex were measured over the range 5 – 298 K and the observed data were successfully simulated by the equation based on the spin‐Hamiltonian operator. Magnetic susceptibility measurements indicate very weak antiferromagnetic coupling between the iron(III) ions with J = – 11.5 cm‐1. The comparison of the magnetic and structural parameters of the investigated compound is given and the nature of the magnetic super‐exchange interaction of the title compound is compared with similar dinuclear iron(III) complexes. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
《Journal of Non》2006,352(40-41):4179-4182
The magnetic properties of the Mg2FeV3O11−x ternary vanadate, characterized by disorder between diamagnetic Mg2+ and high-spin Fe3+ ions, are studied using dc magnetization and electron paramagnetic resonance (EPR). The dc susceptibility shows antiferromagnetic interactions between Fe3+ spins with a Curie–Weiss temperature of Θ = −50(1) K, followed by spin-glass-like freezing at Tf  2.8 K, suggesting significant spin frustration. Temperature-dependent EPR measurements confirm the antiferromagnetic coupling of Fe3+ spins at high temperatures, while a distinct divergence is observed at T  50 K. This behavior is associated with the formation of spin clusters providing two different energy scales for the magnetic interactions. The magnetic response of Mg2FeV3O11−x is similar to that of the Zn-analogue compound, though the observed differences of the implicated energy scales indicate that magnetic inhomogeneity depends on the extent of cation disorder.  相似文献   

14.
Nd‐doped ZnO nanoparticles with different concentration were synthesized by sol‐gel method. The structures, magnetic and optical properties of as‐synthesized nanorods were investigated. X‐ray diffraction (XRD) and x‐ray photoelectron spectroscopy (XPS) results demonstrated that Nd ions were incorporated into ZnO lattice; but Zn1‐xNdxO nanoparticles with Nd concentration of x = 0.05 showed Nd2O3 phase, so the saturation concentration of Nd in Zn1‐xNdxO is less than 5 at%. Vibrating sample magnetometer (VSM) measurements indicated that Nd doped ZnO possessed dilute ferromagnetis behaviour at room temperature. Photoluminescence spectroscopy (PL) showed that Nd ions doping induced a red slight shift and decrease in UV emission with increase of Nd concentration.  相似文献   

15.
The mixed oxide (Gd1‐xYx)2O3 (0.0 ≤ x ≤ 1.0) were synthesized, as powder and thin film, by a sol‐gel process. X‐ray diffraction data were collected and crystal structure and microstructure analysis were performed using Rietveld refinement method. All samples were found to have the same crystal system and formed solid solutions over the whole range of x. The cationic distribution, Gd3+ and Y3+, over the two non‐equivalent sites 8b and 24d of the space group Ia3 is found to be random for all values of (x). The lattice parameter is found to vary linearly with the composition (x). Replacing Gd3+ and Y3+ by each other introduces a systemic decrease in the x‐coordinate of cation position (24d) and slight changes in the oxygen coordinates. Crystallite size and microstrain analysis is performed along different crystallographic directions and anisotropic changes are found with the composition parameter (x). The average crystallite size ranges from 75 to 149 nm and the r.m.s strain from 0.027 to 0.068 x10‐2. Textured Gd1.841Y0.159O3 (400) buffer layers, with a high degree of alignment in both out‐plane and in‐plan, are successfully grown on cube textured Ni (001) tape substrates by sol–gel dip coating process. The resulting buffer layers are crack‐free, pinhole‐free, dense and smooth. YbBa2Cu3O7‐x (YbBCO) thin film could be (00l) epitaxially grown on the obtained buffer layer using sol–gel dipping technique. (© 2007 WILEY ‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
For La1‐xNdxGaO3 crystals the La‐Nd substitution leads to decrease of spontaneous strains and for composition with x≈0.32 the six possible twin states of orthorhombic phase (m3mFmmm) may be degenerated in three twin states inhered in m3mF4/mmm species when a distorted perovskite pseudocell becomes tetragonal. The {110} and {112} reflection twins and axial twins with compositional planes close to (211) and (21‐1) (S‐walls) were identified in La1‐xNdxGaO3 (x=0.07, 0.12, 0.20) solid solutions crystals. All observed twins are typical for crystals with GdFeO3 type perovskite‐like structure. It has been shown that for x≤0.2 and x≥0.5 orientations of S‐walls weakly depend on La/Nd ratio, whereas in the range of 0.2<x<0.5 they depend strongly on the solid solution composition. The tilt angle between two twin states across twin boundary in La1‐xNdxGaO3 (x<0.6) solid solutions is smaller than that between two twins in pure LaGaO3 or NdGaO3.  相似文献   

17.
The local glass structure of tellurite glasses containing CuO with the nominal composition x(CuO) · (1−x)(TeO2), where x=0.10, 0.20, 0.30, 0.40, and 0.50, as well as the valence state of the copper ions have been investigated by X-ray photoelectron spectroscopy (XPS) and magnetization measurements. The Te 3d core level spectra for all glass samples show symmetrical peaks (Te 3d5/2 and Te 3d3/2) at essentially the same binding energies as measured for TeO2 indicating that the chemical environment of the Te atoms in the glasses does not vary significantly with the addition of CuO. The O 1s spectra, however, show slight asymmetry for all glass samples which results from two contributions, one from the presence of oxygen atoms in the Te-O-Te environment (bridging oxygen BO) and the other from oxygen atoms in an Te-O-Cu environment (non-bridging oxygen NBO). The ratio of NBO to total oxygen was found to increase with CuO content and to be in good agreement with calculated values for the TeO4 trigonal bipyramid structure. Moreover, the appearance of a satellite peak in the Cu 2p spectra provides definitive evidence for the presence of Cu2+ ions in these glass samples where the asymmetry and broadening of the Cu 2p3/2 and Cu 2p1/2 peaks are indicative of the presence of both Cu2+ and Cu+ ions. The relative concentration Cu2+ determined from XPS is in good qualitative agreement with the determinations of Cu2+ from magnetic susceptibility measurements on the same glass samples. Furthermore the susceptibility data follow a Curie-Weiss temperature-dependent behavior (χ=C/(Tθ)) with negative Curie temperatures indicating that the predominant magnetic interactions between the Cu2+-Cu2+ exchange pairs are antiferromagnetic in nature.  相似文献   

18.
Large and high‐quality single crystals of both Pb‐free and Pb‐doped high temperature superconducting compounds (Bi1‐xPbx)2Sr2Ca2Cu3O10‐y (x = 0 and 0.3) were grown by means of a newly developed “Vapour‐Assisted Travelling Floating Zone” technique (VA‐TSFZ). This modified zone‐melting technique was realised in an image furnace and allowed for the first time to grow Pb‐doped crystals by compensating for the Pb losses occurring at high temperature. Crystals up to 3×2×0.1 mm3 were successfully grown. Post‐annealing under high pressure of O2 (up to 10 MPa at T = 500°C) was undertaken to enhance Tc and improve the homogeneity of the crystals. Structural characterisation was performed by single‐crystal X‐ray diffraction (XRD) and the structure of the 3‐layer Bi‐based superconducting compound was refined for the first time. Structure refinement showed an incommensurate superlattice in the Pb‐free crystals. The space group is orthorhombic, A2aa, with cell parameters a = 27.105(4) Å, b = 5.4133(6) Å and c = 37.009(7) Å. Superconducting studies were carried out by A.C. and D.C. magnetic measurements. Very sharp superconducting transitions were obtained in both kinds of crystals (ΔTc ≤ 1 K). In optimally doped Pb‐free crystals, critical temperatures up to 111 K were measured. Magnetic critical current densities of 2�105 A/cm2 were measured at T = 30 K and μ0H = 0 T. A weak second peak in the magnetisation loops was observed in the temperature range 40‐50 K above which the vortex lattice becomes entangled. We have measured a portion of the irreversibility line (0.1‐5 Tesla) and fitted the expression for the melting of a vortex glass in a 2D fluctuation regime to the experimental data. Measurements of the lower critical field allowed to obtain the dependence of the penetration depth on temperature: the linear dependence of λ(T) for T < 30 K is consistent with d‐wave superconductivity in Bi‐2223. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
It is known now that an increase in tumor temperature decreases the tumor resistance to chemo‐ and radiation therapies. Hyperthermia treatment of the tumor cells where damage to the healthy cells can be avoided is viable by using magnetic nanoparticles with controlled Curie temperatures. Nickel‐Chromium (Ni1‐x Crx) particles with varying compositions have been investigated as thermoseeds for use in localized self controlled hyperthermia treatment of cancer. A series of Ni1‐x Crx alloys, have been prepared to find the specific composition which has Curie temperature around 316‐317 K. The samples were cast by arc melting technique, and were annealed at 850 oC for 5 hours in sealed quartz tubes. Magnetic properties of the samples were investigated, including Curie temperature, saturation magnetization and hysterisis using Superconducting Quantum Interference Device (SQUID) and Vibrating Sample Magnetometer (VSM). The Curie temperatures of the alloys were found to decrease almost linearly from 401 K to 289 K as the Cr concentration was increased from x = 4.54 wt% to x = 5.90 wt%. The results showed that Ni1‐x Crx alloys might be good candidates for self regulating magnetic hyperthermia applications. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
Copper oxidation states, structure and properties of xCuO · (50-x)PbO · 50B2O3 glasses were investigated. Both infrared (IR) and 11B magic angle spinning nuclear magnetic resonance (MAS NMR) spectroscopies were employed to determine the tetrahedral BO4 fraction in the glasses as a function of CuO content. IR study indicates that the replacement of Pb2+ by Cu2+ ions increases the BO3 units by converting BO4- containing groups into ring type metaborate groups. The oxidation states of copper ions in the glasses have been studied using both X-ray photoelectron spectroscopy (XPS) and the wet chemical method. For high CuO containing (?30 mol%) glasses, high Cu+ ion concentrations (Cu+/Cutot.>0.3) result in a relatively slow disproportionation of B4-containing groups because of the small coordination number of Cu+ compared to Cu2+ ions. Effects of both glass structure and redox states of copper ions on glass properties including density, Vickers’ hardness, coefficient of thermal expansion, and chemical durability have been discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号