首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Sodium and potassium methyl(nitroso)amide (M[CH3N2O], M = Na ( 1 ), K ( 2 )) were prepared by the reaction of monomethylhydrazine with iso‐pentyl nitrite or n‐butyl nitrite and a suitable metal ethoxide (M[CH3CH2O], M = Na, K) in an ethanol‐ether mixture. The reaction of monomethylhydrazine with a small excess of iso‐pentyl nitrite or n‐butyl nitrite and in the absence of a metal ethoxide led to the formation of N‐nitroso‐N‐methylhydrazine (CH3(NO)N–NH2, ( 3 )). Alternatively, compound 3 was prepared by the amination reaction of 1 or 2 using the sodium salt of HOSA in ethanol solution. Compounds 1–3 were characterized using elemental analysis, differential scanning calorimetry, mass spectrometry, vibrational (infrared and Raman) and UV spectroscopy and multinuclear (1H, 13C and 15N) NMR spectroscopy. For compounds 1–3 , several physical and chemical properties of interest and sensitivity data were measured and for compound 3 thermodynamic and explosive properties are also given. Additionally, the solid‐state structure of compound 3 was determined by single‐crystal X‐ray analysis and the structures of the cis‐ and trans‐[CH3N2O] anions and that of 3 were optimized using DFT calculations and used to calculate the NBO charges.  相似文献   

2.
Using relative rate methods, rate constants for the gas‐phase reactions of OH radicals and Cl atoms with di‐n‐propyl ether, di‐n‐propyl ether‐d14, di‐n‐butyl ether and di‐n‐butyl ether‐d18 have been measured at 296 ± 2 K and atmospheric pressure of air. The rate constants obtained (in cm3 molecule−1 s−1 units) were: OH radical reactions, di‐n‐propyl ether, (2.18 ± 0.17) × 10−11; di‐n‐propyl ether‐d14, (1.13 ± 0.06) × 10−11; di‐n‐butyl ether, (3.30 ± 0.25) × 10−11; and di‐n‐butyl ether‐d18, (1.49 ± 0.12) × 10−11; Cl atom reactions, di‐n‐propyl ether, (3.83 ± 0.05) × 10−10; di‐n‐propyl ether‐d14, (2.84 ± 0.31) × 10−10; di‐n‐butyl ether, (5.15 ± 0.05) × 10−10; and di‐n‐butyl ether‐d18, (4.03 ± 0.06) × 10−10. The rate constants for the di‐n‐propyl ether and di‐n‐butyl ether reactions are in agreement with literature data, and the deuterium isotope effects are consistent with H‐atom abstraction being the rate‐determining steps for both the OH radical and Cl atom reactions. © 1999 John Wiley & Sons, Inc. Int J Chem Kinet 31: 425–431, 1999  相似文献   

3.
The new bulky organosilicon compound HC(Me2SiCH2CH2CH2OCH2CycloCHCH2O)3 was synthesized by hydrosilylation of tris(dimethylsilyl)methane (HMe2Si)3CH and allyl glycidyl ether (AGE) in the presence of H2PtCl6 as a catalyst. Polysiloxanes containing 3-(2,3-epoxypropoxy)propyl and chloromethylphenethyl groups were synthesized by hydrosilylation of AGE and chloromethyl styrene (CMS) with hydrogen-containing polymethylsiloxane (PMHS). Both types of polymers could be modified by incorporation of the highly sterically-demanding tris(trimethylsilyl)methyl [trisyl = (Me3Si)3C] substituent. The trisyl (Tsi) groups were attached to the obtained polymers as side chains by reacting excess trisyl lithium with benzyl chloride and epoxy groups. The epoxy groups possess a higher reactivity for TsiLi than the chloromethyl groups. The ring opening reaction between the epoxy groups and TsiLi is fast. The modification increases the rigidity of the polymers as shown by differential scanning calorimetry analysis. The incorporation of the Tsi groups into the polymer structure creates macromolecules of novel architecture with potential use as membranes for fluid separation. All the resulting polymers were characterized by FT-IR and 1H NMR spectroscopy.  相似文献   

4.
The interaction between cucuribit[8]uril (Q[8]) and a series of 4‐pyrrolidinopyridinium salts bearing aliphatic substituents at the pyridinium nitrogen, namely 4‐(C4H8N)C5H5NRBr, where R=Et (g1), n‐butyl (g2), n‐pentyl (g3), n‐hexyl (g4), n‐octyl (g5), n‐dodecyl (g6), has been studied in aqueous solution by 1H NMR spectroscopy, electronic absorption spectroscopy, isothermal titration calorimetry and mass spectrometry. Single crystal X‐ray diffraction revealed the structure of the host–guest complexes for g1, g2, g3, and g5. In each case, the Q[8] contains two guest molecules in a centrosymmetric dimer. The orientation of the guest molecule changes as the alkyl chain increases in length. Interestingly, in the solid state, the inclusion complexes identified are different from those observed in solution, and furthermore, in the case of g3, Q[8] exhibits two different interactions with the guest. In solution, the length of the alkyl chain plays a significant role in determining the type of host–guest interaction present.  相似文献   

5.
Syntheses are described of a number of 2,6‐difunctionalized dimethylsilylbenzenes, namely, 1‐(HMe2Si)‐2,6‐Cl2C6H3 ( 13 ), 1‐(HMe2Si)‐2,6‐Br2C6H3 ( 14 ), 1,2,3‐(HMe2Si)3C6H3 ( 15 ), 1,2‐(HMe2Si)2‐6‐ClC6H3 ( 16 ), 1,2‐(HMe2Si)2‐6‐BrC6H3 ( 17 ), 1‐(HMe2Si)‐2‐(Ph2P)‐6‐BrC6H3 ( 18 ), diphenyl(1,1,3,3‐tetramethyl‐1,3‐dihydrobenzo[c][1,2,5]oxadisilol‐4‐yl)phosphine oxide ( 19 ) and 8‐Brom‐1,1,3,3‐tetramethyl‐2,2,2,2,‐tetracarbonyl‐1,3‐dihydro‐benzo[d][2,1,3]ferra disilol ( 20 ). Compounds 13 – 20 were characterized by multinuclear NMR spectroscopy and in case of 18 – 20 also by single crystal X‐ray diffraction.  相似文献   

6.
Density functional methods at the 6-31G* level are applied to the rupture of n-octane into methyl–heptyl, ethyl–hexyl, propyl–pentyl, and butyl–butyl radical fragments. The energetics of the radicals at UMP3, UMP2/6-31G*//UHF/6-31G* (hereafter referred to as UMP), are compared to UB3LYP/6-31G* results (referred to as UB). Although the UMP approach matches additivity energies to within 5 kcal/mol, it fails to mimic the overall energetic trend. The UB energies agree with additivity estimates and trends to within 1–2 kcal/mol and radical entropies deviate by only 2 e.u. from available experimental data. © 1998 John Wiley & Sons, Inc. J Comput Chem 19: 154–167, 1998  相似文献   

7.
A new chiral half‐titanocene complex, [CpTiCl2(O‐(S)?2‐Bu)], is synthesized and characterized by 1H and 13C NMR spectroscopy. This complex is employed for the coordination polymerization of n‐butyl and n‐hexyl‐ isocyanate leading to chiral polymers, as revealed by their CD spectra. Only the left‐handed helix is produced, due to the chiral (S)?2‐butoxy group, which is bound to the polymer chain end. The polymerization of 3‐(triethoxysilyl)propyl isocyanate produces less soluble polymers. On the other hand, phenyl isocyanate reacts slowly with the complex leading quantitatively and selectively to triphenyl isocyanurate. 2‐Ethylhexyl isocyanate is slowly and selectively cyclotrimerized in the presence of the half‐titanocene complex. However, a statistical copolymer of 2‐ethylhexyl isocyanate and hexyl isocyanate is produced. The reaction of benzyl isocyanate with the complex leads to a mixture of low molecular weight polymer and cyclotrimer. The polymers are characterized using SEC, NMR, and CD spectroscopy and their thermal properties are investigated by TGA/DSC analysis. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2141–2151  相似文献   

8.
To study living anionic polymerization, 3‐(triethylsilyl)propyl isocyanate (TEtSPI) monomer was synthesized by hydrosilylation of allylamine with triethylsilane and treatment of the resulting amine with triphosgene. The polymerization of TEtSPI was performed with sodium naphthalenide (Na‐Naph) as an initiator and in the absence and presence of sodium tetraphenylborate (NaBPh4) as an additive in tetrahydrofuran (THF) at ?78 and at ?98 °C. A highly stabilized amidate anion for living polymerization of isocyanates was generated for the first time with the combined effect of the bulky substituent and the shielding action of the additive NaBPh4, extending the living character at least up to 120 min at ?98 °C. Even the anion could exist at ?78 °C for 10 min. A block copolymer, poly(n‐hexyl isocyanate)‐b‐poly[(3‐triethylsilyl)propyl isocyanate]‐b‐poly(n‐hexyl isocyanate), was synthesized with quantitative yields and controlled molecular weights via living anionic polymerization in THF at ?78 °C for TEtSPI and ?98 °C for n‐hexyl isocyanate, respectively, with Na‐Naph with three times of NaBPh4 as a common ion salt. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 933–940, 2004  相似文献   

9.
The reactions of N‐dichlorophosphoryl‐P‐trichlorophosphazene Cl3PN P(O)Cl2 ( 1 ) with benzylmagnesium bromide, 2‐phenylethylmagnesium bromide, trimethylsilylmethylmagnesium chloride, n‐butylmagnesium bromide, cyclohexylmagnesium bromide, cyclopentylmagnesium bromide, tert‐butylmagnesium bromide, iso‐propylmagnesium bromide, and ethylmagnesium bromide were studied. Tri‐ and pentaalkyl phosphazenes were obtained in very poor yield from trimethylsilylmethylmagnesium chloride and cyclohexylmagnesium bromide, respectively. Trialkylphosphoryl compounds formed from benzyl‐, 2‐phenylethyl‐, and n‐butylmagnesium bromide. No phosphorus compound could be isolated from the reaction of 1 with t‐butyl‐, cyclopentyl‐, iso‐propyl‐, and ethylmagnesium bromide. © 2003 Wiley Periodicals, Inc. Heteroatom Chem 14:413–416, 2003; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/hc.10153  相似文献   

10.
Interaction of allyl ethers with hydrosiloxanes in the presence of metal complexes has been investigated by spectral methods (1H NMR, IR, and GC-MS) as well as by gas-liquid chromatography. It has been shown that the anti-Markovnikov addition predominantly occurs in the studied cases; disproportionation of siloxanes and migration of double bond in the ethers have been identified as side reactions. The tendency to enter the side reactions has decreased in the following series: (HMeSiO)4 > HMe2Si(OSiMe2)2H ≈ HMe2SiOSiMe3 > (HMe2Si)2O > (Me3SiOSiMeH)2O. The general scheme of disproportionation of siloxanes HMe2Si(OSiMe2) n H (n ≥ 1) has been proposed. According to mass spectrometry data, the silicon-containing fragment majorly contributes to the fragmentation of hydrosilylation products. Fragmentation of the γ,γ-adducts is similar to that of γ-adducts. The predominant direction of fragmentation in the products of β,γ-addition of HMe2Si(OSiMe2)nH (n = 1–3) to allyl ethers is determined by fragmentation of the γ-component of the molecule. The scheme of fragmentation of the hydrosilylation products ions has been proposed.  相似文献   

11.
Halfsandwich‐Type Complexes of Iridium with Tetramethylcyclopentadienyl as Ligand The iridium(I) complexes [(η5‐C5HMe4)Ir(C2H4)2] ( 2 ) and [(η5‐C5HMe4)Ir(CO)2] ( 4 ), which have been prepared from [IrCl(C2H4)2]2 or [IrCl(CO)3]n and LiC5HMe4, react with tosylchloride as well as with X2 (X = Cl, Br, I) by oxidative addition to yield the corresponding iridium(III) compounds. Treating the complexes [(η5‐C5HMe4)IrX2]n ( 7 — 9 ) with CO or PR3 leads to a cleavage of the halide bridges and to the formation of the mononuclear products [(η5‐C5HMe4)IrX2(CO)] ( 10 , 11 ) and [(η5‐C5HMe4)IrX2(PR3)] ( 12 — 20 ), respectively. The molecular structure of [(η5‐C5HMe4)IrBr2(PiPr3)] ( 18 ) was determined crystallographically. The reactions of 8 (X = Br) and 9 (X = I) with Ph2P(CH2)nPPh2 (n = 1 or 2) afford the bridged compounds [{(η5‐C5HMe4)IrX2}2{μ‐Ph2P(CH2)nPPh2}] ( 21—23 ). The dihalide complexes [(η5‐C5HMe4)IrI2(PPh3)] ( 16 ) and [(η5‐C5HMe4)IrX2(PiPr3)] ( 17—19 ) react with hydride sources to give the dihydrido‐ and monohydrido derivatives [(η5‐C5HMe4)IrH2(PPh3)] ( 24 ) and [(η5‐C5HMe4)IrH(X)(PiPr3)] ( 25—27 ). The related dimethyl and monomethyl compounds [(η5‐C5HMe4)Ir(CH3)2(PiPr3)] ( 28 ) and [(η5‐C5HMe4)IrCH3(I)(PiPr3)] ( 29 ) have been obtained from the dihalide precursors 18 or 19 and CH3MgI in the molar ratio of 1:2 or 1:1, respectively.  相似文献   

12.
Abstract

The template reactions of salicylidene-, 5-bromosalicylidene-, and 3,5-dichlorosalicylidene-S-R-thiosemicarbazone (R: propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, dodecyl) with 5-bromo- and 3,5-dichlorosalicylaldehyde in the presence of nickel(II) yielded N1,N4-diarylidene-S-alkyl-thiosemicarbazone chelates. The N2O2 type complexes were isolated as stable solid compounds and characterized by elemental analysis, electronic, infrared, 1H NMR, and mass spectroscopies. The magnetic susceptibility measurements at room temperature (r.t.) indicate the diamagnetic nature of the complexes. The relationship between melting point (mp) values of the nickel(II) template complexes and the chain length of alkyl moiety was clearly shown.

Supplemental materials are available for this article. Go to the publisher's online edition of Phosphorus, Sulfur, and Silicon and the related elements to view the free supplemental file.  相似文献   

13.
A series of 5‐[1‐methylsilacyclo‐pentyl/‐hexyl]‐2‐furfural, 5‐[1‐methylsilacyclo‐pentyl/‐hexyl]‐2‐thiophene carbaldehyde and 1,1‐bis(5‐formyl‐2‐furyl)silacyclo‐pentane/‐hexane and their thiosemicarbazones has been synthesized and subjected to antitumour assay. The effects of the substituents and the heterocycle were examined to establish structure–activity relationships. Thiosemicarbazones of 5‐(1‐methylsilacyclohexyl)furfural and 5‐(1‐methylsilacyclopentyl)furfural were very active (1.0–4.0 µg ml?1) in vitro against human fibrosarcoma HT‐1080 and mouse hepatoma MG‐22A cells. At the same time, they were less toxic for normal fibroblasts 3T3. All compounds synthesized exhibited low or moderate toxicity (LD50 152–1904 mg kg?1). Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

14.
Cationic ring‐opening polymerizations of 5‐alkyl‐ or 5,7‐dialkyl‐1,3‐dehydroadamantanes, such as 5‐hexyl‐ ( 4 ), 5‐octyl‐ ( 5 ), 5‐butyl‐7‐isobutyl‐ ( 6 ), 5‐ethyl‐7‐hexyl‐ ( 7 ), and 5‐butyl‐7‐hexyl‐1,3‐dehydroadamantane ( 8 ), were carried out with super Brønsted acids, such as trifluoromethanesulfonic acid or trifluoromethanesulfonimide in CH2Cl2 or n‐heptane. The ring‐opening polymerizations of inverted carbon–carbon bonds in 4–8 proceeded to afford corresponding poly(1,3‐adamantane)s in good to quantitative yields. Poly( 4–8 )s possessing alkyl substituents were soluble in 1,2‐dichlorobenzene, although a nonsubstituted poly(1,3‐adamantane) was not soluble in any organic solvent. In particular, poly( 8 ) exhibited the highest molecular weight at around 7500 g mol?1 and showed excellent solubility in common organic solvents, such as THF, CHCl3, benzene, and hexane. The resulting poly( 4–8 )s containing adamantane‐1,3‐diyl linkages showed good thermal stability, and 10% weight loss temperatures (T10) were observed over 400 °C. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4111–4124  相似文献   

15.
The novel dioxomolybdenum(VI) complexes with methyl ( 1 ), ethyl ( 2 ), n‐propyl ( 3 ), i‐propyl ( 4 ), n‐butyl ( 5 ) and cyclohexyl ( 6 ) ester of 2‐mercaptonicotinic acid have been prepared in the reactions of MoO2Cl2 and MoO2(acac)2 (acac = 2,4‐pentandionate) with mercaptonicotinic acid in corresponding alcohol. The esterification reaction was catalyzed by MoV originated from the reduction of MoVI with mercaptonicotinic ‐SH group with simultaneous formation of S–S bond resulting from the condensation of two 2‐mercaptonicotinic molecules. The presence of MoV was proved by ESR spectra. The molecular and crystal structures of 1 , 2 , 3 and 4 as well as of the by‐products 1,1′‐dithio‐2,2′‐n‐butylnicotinoate ( 7 ) and tetramethylammonium hexachloromolybdate(V) ( 8 ) have been determined by a X‐ray single crystal diffraction. The complexes 1 – 4 contain MoO22+ core with octahedral coordination of each molybdenum atom complexed by two 2‐mercaptonicotinato N and S donor atoms.  相似文献   

16.
Pentaerythritol tetrakis(2‐iodopropionate) was used as a tetrafunctional initiator for the Na2S2O4 catalyzed SET‐DTLRP of n‐butyl acrylate in water at room temperature. The resulting tetrafunctional poly(n‐butyl acrylate) macroinitiator with Mn = 14,864 or Mn = 3627 per arm was used to initiate the SET‐DTLRP of vinyl chloride and provide the first examples of four‐arm star‐block copolymers [PVC‐b‐PBA‐CH(CH3)? CO? O? CH2]4C. The Mn of the PVC segment from each arm of the four‐arm star‐block copolymer varied between 353 and 33,622. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 628–634, 2009  相似文献   

17.
Methoxydimethylsilane and chlorodimethylsilane‐terminated telechelic polyoctenomer oligomers (POCT) have been prepared by acyclic diene metathesis (ADMET) chemistry using Grubbs' ruthenium Ru(Cl2)(CHPh)(PCy3)2 [Ru] or Schrock's molybdenum Mo(CH CMe2Ph)(N 2,6 C6H3i Pr2)(OCMe(CF3)2)2 [Mo] catalysts. These macromolecules have been characterized by FTIR, 1H‐, 13C‐, and 29Si‐NMR spectroscopy. The molecular weight distributions of these polymers have been determined by GPC and vapor pressure osmometry (VPO). The number‐average molecular weight (Mn) values of the telechelomers are dictated by the initial ratio of the monomer to the chain limiter. The termini of these oligomers (Mn = 2000) can undergo a condensation reaction with hydroxy‐terminated poly(dimethylsiloxane) (PDMS) macromonomer (Mn = 3300) [HO Si(CH3)2 O { Si(CH3)2O }x  Si(CH3)3], producing an ABA‐type block copolymer, as follows: (CH3)3SiO [ Si(CH3)2O ]x [ CHCH (CH2)6 ]y [ OSi(CH3)2 ]x OSi(CH3)3. The block copolymers were characterized by 1H‐ and 13C‐NMR spectroscopy, VPO, and GPC, as well as elemental analysis, and were determined by VPO to have a Mn of 8600. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 849–856, 1999  相似文献   

18.
Tris(dimethylsilyl)methyl lithium, (HSiMe2)3CLi, reacts with allyl, phenyl, benzyl, n‐propyl and n‐butyl glycidyl ethers in THF at ‐5 °C to give 1‐oxa‐2‐silacyclopentane derivatives. It seems that ring closure is facilitated by conversion of the Si? H bond into an Si? O bond. Glycidyl methacrylate (GM) random copolymers with 4‐methyl‐ and 4‐methoxy styrene, synthesized by solution free radical polymerization at 70 (±1) °C with α,α‐azobis(isobutyronitrile) (AIBN) as initiator, contained pendant epoxide functions. Treatment of these with (HSiMe2)3CLi did not lead to intramolecular nucleophilic attack as found for simple epoxides.  相似文献   

19.
Group selectivity in the allylation of mixed (n‐butyl)(phenyl)zinc reagent can be controlled by changing reaction parameters. CuCN‐catalyzed allylation in tetrahydrofuran (THF)–hexamethylphosphoric triamide is n‐butyl selective and also γ‐selective in the presence of MgCl2, whereas CuI‐catalyzed allylation in THF in the presence of n‐Bu3P takes place with a n‐butyl transfer:phenyl transfer ratio of 23:77 and an α:γ transfer ratio of phenyl of 76:24. NiCl2(Ph3P)2‐catalyzed allylation in the presence of LiCl is phenyl selective with an α:γ ratio of 65:35. The reaction of methyl‐ or n‐butyl(aryl)zinc reagents with an allylic electrophile in THF at room temperature in the presence of NiCl2(Ph3P)2 catalyst and LiCl as an additive provides an atom‐economic alternative to aryl–allyl coupling using diarylzincs. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
2,2‐Difluor‐1,3‐diaza‐2‐sila‐cyclopentene – Synthesis and Reactions N,N′‐Di‐tert‐butyl‐1,4‐diaza‐1,3‐butadiene reacts with elemental lithium under reduction to give a dilithium salt, which forms with fluorosilanes the diazasilacyclopentenes 1 – 4 ; (HCNCMe3)2SiFR, R = F ( 1 ), Me ( 2 ), Me3C ( 3 ), N(CMe3)SiMe3 ( 4 ). As by‐product in the synthesis of 1 , the tert‐butyl‐amino‐methylene‐tert‐butyliminomethine substituted compound 5 was isolated, R = N(CMe3)‐CH2‐CH = NCMe3. 5 is formed in the reaction of 1 with the monolithium salt of the 1,4‐diaza‐1,3‐butadiene in an enamine‐imine‐tautomerism. 1 reacts with lithium amides to give (HCNCMe3)2SiFNHR, 6 – 12 , R = H ( 6 ), Me ( 7 ), Me2CH ( 8 ), Me3C ( 9 ), H5C6 ( 10 ), 2,6‐Me2C6H3 ( 11 ), 2,6‐(Me2CH)2C6H3 ( 12 ). The reaction of 12 with LiNH‐2.6‐(Me2CH)2C6H3 leads to the formation of (HCNCMe3)2Si(NHR)2, ( 13 ). In the presence of n‐BuLi, 12 forms a lithium salt which looses LiF in boiling toluene. Lithiated 12 adds this LiF and generates a spirocyclic tetramer with a central eight‐membered LiF‐ring ( 14 ), [(HCNCMe3)2Si(FLiFLiNR)]4, R = 2,6‐(Me2CH)2C6H3. ClSiMe3 reacts with lithiated 12 to yield the substitution product (HCNCMe3)2SiFN(SiMe3) R, ( 15 ). The crystal structures of 1 , 5 , 6 , 9 , 11 , 13 , 14 are reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号