首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The 1,3,4,6‐tetra‐O‐acetyl‐2‐azido‐2‐deoxy‐β‐D ‐mannopyranose ( 4 ) or the mixture of 1,3,6‐tri‐O‐acetyl‐2‐azido‐2‐deoxy‐4‐O‐(2,3,4,6‐tetra‐O‐acetyl‐β‐D ‐galactopyranosyl)‐β‐D ‐mannopyranose ( 10 ) and the corresponding α‐D ‐glucopyranose‐type glycosyl donor 9 / 10 reacted at room temperature with protected nucleosides 12 – 15 in CH2Cl2 solution in the presence of BF3?OEt2 as promoter to give 5′‐O‐(2‐azido‐2‐deoxy‐α‐D ‐glycosyl)nucleosides in reasonable yields (Schemes 2 and 3). Only the 5′‐O‐(α‐D ‐mannopyranosyl)nucleosides were obtained. Compounds 21, 28, 30 , and 31 showed growth inhibition of HeLa cells and hepatoma Bel‐7402 cells at a concentration of 10 μM in vitro.  相似文献   

2.
Iodination of N2‐isobutyryl‐5‐aza‐7‐deazaguanine ( 7 ) with N‐iodosuccinimide (NIS) gave 7‐iodo‐N2‐isobutyryl‐5‐aza‐7‐deazaguanine ( 8 ) in a regioselective reaction (Scheme 1). Nucleobase‐anion glycosylation of 8 with 2‐deoxy‐3,5‐di‐O‐toluoyl‐α‐D ‐ or α‐L ‐erythro‐pentofuranosyl chloride furnished anomeric mixtures of D ‐ and L ‐nucleosides. The anomeric D ‐nucleosides were separated by crystallization to give the α‐D ‐anomer and β‐D ‐anomer with excellent optical purity. Deprotection gave the 7‐iodo‐5‐aza‐7‐deazaguanine 2′‐deoxyribonucleosides 3 (β‐D ; ≥99% de) and 4 (α‐D ; ≥99% de). The reaction sequence performed with the D ‐series was also applied to L ‐nucleosides to furnish compounds 5 (β‐L ; ≥99% de) and 6 (α‐L ; ≥95% de).  相似文献   

3.
The palladium complex of MgO‐supported melamine‐formaldehyde polymer catalyst was prepared and characterized by X‐ray diffraction (XRD) and X‐ray photoelectron spectroscopy (XPS). The preparation of Nn‐octyl‐D ‐glucamine was investigated by using this complex as the catalyst. It was found that the palladium complex of MgO‐supported melamine‐formaldehyde polymer has a good catalytic activity for the hydrogenation of n‐octylamine with D ‐glucose to produce Nn‐octyl‐D ‐glucamine. The effects of additive, solvent, temperature, hydrogen pressure, Pd content in the catalyst and the amount of catalyst on the preparation of Nn‐octyl‐D ‐glucamine have all been studied. Under the optimum experimental conditions—D ‐glucose, 37.2 mmol; n‐octylamine, 31 mmol; triethylamine, 1.0 ml; ethanol, 60 ml; temperature, 333 K; hydrogen pressure, 1.5 MPa; the amount of the catalyst (Pd content 3.55%, N/Pd molar ratio 12), 0.7 g—the highest yield of Nn‐octyl‐D ‐glucamine (57.6%) was obtained. XRD results show that melamine‐formaldehyde polymer changed the structure of MgO, and XPS results suggest that coordination bonds were formed between the hexatomic ring and metal atom, and palladium particles were immobilized on the polymer. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

4.
The D ‐gluco‐isoquinuclidines 3 and 4 were prepared and tested as inhibitors of the β‐glucosidases from Caldocellum saccharolyticum and from sweet almonds; the results are compared to the inhibition of snail β‐mannosidase by the D ‐manno‐isoquinuclidines 1 and 2 . Exploratory experiments in the racemic series showed that treatment of the ester epoxide 6 with benzyl alcoholates leads only to epimerisation, transesterification, and formation of the cyclopropane 9 . Ring opening of the reduced epoxide 13 by NaN3 proceeded regioselectively to provide 14 . Treatment of the C(6)? O‐triflate 16 with AcOCs induced a rearrangement; the reaction with NaN3 gave the C(5)‐azido derivative 14 . The acetoxy triflate 18 , however, reacted with AcOCs to provide the desired gluco‐isoquinuclidine 19 . Similarly, the enantiomerically pure acetoxy triflate 22 provided the D ‐gluco‐isoquinuclidine 24 , which was reduced and deprotected to provide 3 and 4 . The deoxy analogues 30 and 31 were obtained by reductive deiodination of the iodide 27 , derived from 22 . The D ‐gluco‐isoquinuclidines 3, 4, 30 , and 31 are much weaker inhibitors of β‐glucosidases than the D ‐manno‐analogues 1 and 2 of snail β‐mannosidase. The N‐benzyl derivative 3 is a weaker inhibitor than the N‐unsubstituted analogue in the gluco‐series, while it is a much stronger inhibitor in the manno‐series. A consideration of the pKHA values of the isoquinuclidines 1 – 4 and the pH value of the enzyme assays suggests that the D ‐gluco‐isoquinuclidines are poor mimics of the shape of a reactive, enzyme‐bound gluco‐conformer, while the D ‐manno‐analogues are reasonably good mimics of a reactive, enzyme‐bound manno‐conformer. The inhibition results may also suggest that the glycosidase induced lengthening of the scissile bond and rehybridisation of the anomeric centre are more strongly correlated with the change of the ground‐state conformation during hydrolysis of β‐D ‐glucopyranosides than of β‐D ‐mannopyranosides.  相似文献   

5.
A new anhydro disaccharide monomer, 1,6‐anhydro‐2,3‐di‐o‐benzyl‐4‐o‐(2′,3′,4′,6′‐tetra‐o‐benzyl‐β‐D ‐galactopyranosyl)‐β‐D ‐glucopyranose (benzylated 1,6‐anhydro lactose (LSHBE)), was synthesized from D ‐lactose to investigate the polymerizability and biological activities of the resulting branched polysaccharides. The ring‐opening polymerization of LSHBE was carried out with phosphorus pentafluoride as a catalyst under high vacuum to give a stereoregular benzylated (1 → 6)‐α‐D ‐lactopyranan. The molecular weights of poly(LSHBE)s increased with an increase in the amount of CH2Cl2 solvent, and polymerization temperatures were affected in both molecular weights and yields of the polymers. The copolymerization of LSHBE with benzylated 1,6‐anhydro‐β‐D ‐glucopyranose (LGTBE) gave the corresponding copolysacchrides having different proportions of lactose and glucose units in good yields. After debenzylation to recover hydroxyl groups and then sulfation, sulfated homopoly(lactose)s and copoly(lactose and glucose)s were obtained. Sulfated homopoly(lactose)s had moderate anti‐HIV (EC50 = 5.9 and 1.3 μg/mL) and blood anticoagulant activities (AA = 18 and 13 unit/mg), respectively. Sulfated copoly(lactose and glucose) having 15 mol % lactose units gave high anti‐HIV and blood anticoagulant activities of 0.3 μg/mL and 54 unit/mg, respectively. These biological results suggest that the distance between branched units on the main chain plays an important role in the anti‐HIV and blood anticoagulant activities. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 913–924, 2009  相似文献   

6.
Vanadium(V) oxidation of D ‐glucose shows first‐order dependence on D ‐glucose, vanadium(V), H+, and HSO. These observations remain unaltered in the presence of externally added surfactants. The effect of the cationic surfactant (i.e., N‐cetylpyridinium chloride [CPC]), anionic surfactant (i.e., sodium dodecyl sulfate [SDS]), and neutral surfactant (i.e., Trion X‐100 [TX‐100]) has been studied. CPC inhibits the reactions, whereas SDS and TX‐100 accelerate the reaction to different extents. Observed effects have been explained by considering the hydrophobic and electrostatic interaction between the surfactants and reactants. © 2008 Wiley Periodicals, Inc. Int J Chem Kinet 40: 282–286, 2008  相似文献   

7.
Complex formation between N‐butylboronic acid and D ‐(+)‐glucose, D ‐(+)‐mannose, methyl‐α‐D ‐glucopyranoside, methyl‐β‐D ‐galactopyranoside and methyl α‐D ‐mannopyranoside under neutral conditions was investigated by 1H, 13C and 11B NMR spectroscopy and gas chromatography–mass spectrometry (GC–MS) D ‐(+)‐Glucose and D ‐(+)‐mannose formed complexes where the boronates are attached to the 1,2:4,6‐ and 2,3:5,6‐positions of the furanose forms, respectively. On the other hand, the boronic acid binds to the 4,6‐positions of the two methyl derivatives of glucose and galactose. Methyl α‐D ‐mannopyranoside binds two boronates at the 2,3:4,6‐positions. 11B NMR was used to show the ring size of the complexed sugars and the boronate. GC–MS confirmed the assignments. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

8.
《中国化学》2017,35(10):1633-1639
A series of novel 1,2,3‐triazole‐quinazoline derivatives were synthesized in five steps starting from anthranilamide by conventional methods. All the title compounds 10a — 10r were evaluated for cytotoxic activity against four human cancer cell lines (MGC ‐803, EC ‐109, MCF ‐7 and HGC ‐27) using MTT assay in vitro . Some of the synthesized compounds exhibited moderate to potent activity against tested cancer cell lines. Among them, compounds 10 h and 10q exhibited excellent growth inhibition against HGC ‐27 and compound 10 m also possessed excellent activity against MCF ‐7, with IC50 values less than 1 µmol/L. Especially, compound 10 h was more cytotoxic than 5‐fluorouracil against all tested four human cancer cell lines.  相似文献   

9.
10.
Practical syntheses of 2‐keto‐3‐deoxy‐D ‐xylonate (D ‐KDX) and 2‐keto‐3‐deoxy‐L ‐arabinonate (L ‐KDA) that rely on reaction of the anion of ethyl 2‐[(tert‐butyldimethylsilyl)oxy]‐2‐(dimethoxy phosphoryl) acetate with enantiopure glyceraldehyde acetonide, followed by global deprotection of the resultant O‐silyl‐enol esters, have been developed. This has enabled us to confirm that a 2‐keto‐3‐deoxy‐D ‐gluconate aldolase from the archaeon Sulfolobus solfataricus demonstrates good activity for catalysis of the retro‐aldol cleavage of both these enantiomers to afford pyruvate and glycolaldehyde. The stereochemical promiscuity of this aldolase towards these enantiomeric aldol substrates confirms that this organism employs a metabolically promiscuous pathway to catabolise the C5‐sugars D ‐xylose and L ‐arabinose.  相似文献   

11.
The kinetics and mechanism of cerium(IV) oxidation of hexitols, i.e. D ‐sorbitol and D ‐mannitol, in aqueous sulfuric acid media have been studied in the presence and absence of surfactants. Under the kinetic conditions, [S]T ? [Ce(IV)]T, where [S]T is the total substrate (D ‐sorbitol or D ‐mannitol) concentration, the overall process shows a first‐order dependence on [Ce(IV)]T and [S]T. The process is acid catalyzed and inhibited by [HSO]. From the [HSO] dependence, it has been noted that the both Ce(SO4)2+ and Ce(SO4)2 have been found kinetically active. The different rate constants in the presence and absence of surfactants have been estimated with the activation parameters. N‐cetylpyridinium chloride has been found to retard the oxidation process of hexitols, whereas sodium dodecyl sulfate has been found to accelerate the rate process. All these findings including the micellar effects have been interpreted in terms of the proposed reaction mechanism and partitioning behavior of the kinetically active different species of Ce(IV) between the aqueous and pseudomicellar phase. © 2008 Wiley Periodicals, Inc. 40: 445–453, 2008  相似文献   

12.
Polyol Metal Complexes.471) Crystalline D ‐Mannose‐Copper Complexes from Fehling Solutions Blue, unstable crystals of K3[Cu5(β‐D ‐Manp)4H—13] · α‐D ‐Manp · 16.5 H2O ( 1 ), which contain a pentanuclear cupric complex of the reducing sugar D ‐mannose in its β‐pyranose form (β‐D ‐Manp), have been obtained from ice‐cold aqueous alkaline solutions. The homoleptic pentacuprate contains bridging mannopyranose ligands, which are charged 4— and 2.5—. Addition of ethylenediamine (en) to such Fehling solutions yields N, N′‐Bis(β‐D ‐mannopyranosyl)‐ethylenediamine (L) as a condensation product of the diamine and mannopyranose. Crystals of [(en)2Cu7(β‐D ‐Manp1, 2, 3, 4H—4)2(L2, 3, 4H—3)2] · 26.6 H2O ( 2 ) could be isolated. The heptanuclear cupric complex is a structural derivative of the homoleptic mannose complex.  相似文献   

13.
Acetyl and formyl group migration, mutarotation, and hydrolysis of mono‐O‐acylated glucose are studied by in situ 1D and 2D 1H NMR spectroscopy. α‐D ‐Glucosyl‐1‐acetate and α‐D ‐glucosyl‐1‐formate serve as sole starting materials. They are generated in situ by configuration retaining glucosyltransfer from α‐D ‐glucosyl‐1‐phosphate to formate and acetate, which is catalyzed by the Glu‐237 → Gln mutant of Leuconostoc mesenteroides sucrose phosphorylase. Temporary accumulated regio‐isomeric mono‐O‐acyl D ‐glucoses are identified, characterized, and quantified directly from the reaction mixture. Time courses of the transformations give insight into pH dependence of acyl group migration and mutarotation as well as into the stability of various regioisomers. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
A series of ortho‐(aminomethyl)phenylboronic acids was synthesized and their structures were determined by single‐crystal X‐ray diffraction. The structures are stabilized by the inter‐ and intramolecular hydrogen bonds. The sugar‐binding ability of these compounds was evaluated for D ‐glucose, D ‐fructose and D ‐galactose by the competition assay with Alizarin Red S (ARS). The results indicate that the sugar binding ability and selectivity towards sugars depend on the substituents in amino group. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
Novel linear carbohydrate‐derived [m,n]‐polyurethanes are successfully prepared using D ‐mannitol as renewable and low cost starting material. The key comonomer, 1,6‐di‐O‐phenylcarbonyl‐2,3,4,5‐tetra‐O‐methyl‐D ‐mannitol is polymerized with a diamine synthesized from D ‐mannitol or with alkylenediamines. These polymerization reactions afford, respectively, a [6,6]‐polyurethane entirely based on a carbohydrate derivative or [m,n]‐polyurethanes constituted by a poly‐O‐methyl substituted unit alternating with a polymethylene chain. All these polymers are stereoregular, as result of the C2 axis of symmetry of mannitol. The optically active polyurethanes are characterized by standard methods (FTIR, RMN, GPC, TGA, and DSC). Thus, GPC analysis reveals weight‐average molecular weights between 18,000 and 25,000 Da. Thermal studies (DSC) indicate that the polymers obtained are amorphous materials with Tg values dependent on the structure and chain length of the diamine constituent. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

16.
The condensation polymerization in a methanol solution of four different esterified aldaric acids (D ‐glucaric, meso‐xylaric, meso‐galactaric, and D ‐mannaric) with even‐numbered alkylenediamines (C2–C12) gave polyhydroxypolyamides whose water solubilities and melting points were compared. In general, an increase in the alkylenediamine monomer length resulted in decreased polyamide water solubility. Differences in the polymer melting points and water solubilities were linked primarily to conformational differences of the monomer aldaryl units; for example, polyamides from meso‐galactaric acid with an extended zigzag conformation aldaryl monomer unit had higher melting points and lower water solubilities than those from D ‐glucaric and meso‐xylaric acids. The latter acid monomer units tended toward bent conformations that served to diminish intermolecular attractive forces between polymer chains, affecting polymer solubility and melting characteristics. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 594–603, 2000  相似文献   

17.
Streptothricins (STNs) are atypical aminoglycosides containing a rare carbamoylated D ‐gulosamine (D ‐GulN) moiety, and the antimicrobial activity of STNs has been exploited for crop protection. Herein, the biosynthetic pathway of the carbamoylated D ‐GulN moiety was delineated. An N‐acetyl‐D ‐galactosamine is first attached to the streptolidine lactam by the glycosyltransferse StnG and then epimerized to N‐acetyl‐D ‐gulosamine by the putative epimerase StnJ. After carbamoylation by the carbamoyltransferase StnQ, N‐acetyl‐D ‐GulN is deacetylated by StnI to furnish the carbamoylated D ‐GulN moiety. In vitro studies characterized two novel enzymes: StnG is an unprecedented GT‐A fold N‐glycosyltransferase that glycosylates the imine nitrogen atom of guanidine, and StnI is the first reported N‐acetyl‐D ‐GulN deacetylase.  相似文献   

18.
A new styrene derivative having D ‐mannaric moiety, Np‐vinylbenzyl‐D ‐mannaramic acid (VB‐D ‐ManaH, 8 ) was synthesized though the ring‐opening reaction of D ‐mannaro‐1,4:6,3‐dilactone (D ‐MDL) with p‐vinylbenzylamine. VB‐D ‐ManaH was copolymerized with acrylamide (AAm) to give novel polymers having D ‐mannaric moiety in the pendants, P(VB‐D ‐ManaH‐co‐AAm), 10 . The resulting glycomonomer and polymer ( 8 and 10 ) bearing D ‐mannaric pendants were found to inhibit the β‐glucuronidase activity, although the inhibition ability of the corresponding saccharodilactone (D ‐MDL) was known to be low. Additionally, the inhibition ability of P(VB‐D ‐ManaH‐co‐AAm), 10 , was almost the same as that of the glycopolymer having D ‐glucaric pendants, P(VB‐6‐D ‐GlcaH‐co‐AAm), 1 , which was one of the most effective inhibitors for β‐glucuronidase, reported in our previous work. Thus, 10 and 8 may be the first D ‐mannaric strong inhibitors to the β‐glucuronidase activity. The Lineweaver–Burk plot suggested that the inhibition mechanisms of 10 and 8 were more complicated than in the case of the competitive and uncompetitive inhibition of Np‐(vinylbenzyl)‐6‐D ‐glucaramic ( 11 ) and Np‐(vinylbenzyl)‐1‐D ‐glucaramic acids ( 12 ), respectively. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2032–2042, 2009  相似文献   

19.
Simulated moving bed (SMB) processes have been widely used in the sugar industries with ion‐exchange resin as a stationary phase. D ‐Psicose, a rare monosaccharide known as a valuable pharmaceutical substrate, was synthesized by the enzymatic conversion from D ‐fructose. The SMB process was adopted to separate D ‐psicose from D ‐fructose. Before the SMB experiment, the reaction mixture including D ‐psicose and D ‐fructose was treated by a deashing process to remove contaminants, such as buffers, proteins, and other organic materials. Four columns packed with Dowex 50WX4‐Ca2+ (200–400 mesh) ion‐exchange resins were used in the four‐zone SMB. Single‐step frontal analysis was performed to estimate the isotherm parameters of each monosaccharide. The operating conditions of the SMB process were determined based on the Equilibrium Theory. According to the simulation of the SMB process, the purity and yield of extract product (D ‐psicose) achieved were 99.04 and 97.46%, respectively and those of raffinate product (D ‐fructose) were 99.06 and 99.53%, respectively. Under the optimized operating condition, complete separation (extract purity = 99.36%, raffinate purity = 99.67%) was achieved experimentally.  相似文献   

20.
The reaction of arylboronic acids with L ‐O‐benzoyl‐tartaric acid and D ,L ‐malic acid has been studied. The obtained (acyloxy)boranes are moderately stable in solution and decompose to give boroxines. 5‐Carboxymethyl‐2‐(4‐methylthiophenyl)‐1,3,2‐dioxaborolan‐4‐one was obtained in the reaction of 4‐methylthiophenylboronic acid with D ,L ‐malic acid and characterized by X‐ray structural analysis. The use of L ‐(−)‐malic acid afforded the optically pure product which can be used as the powerful chiral reagent in the enantioselective reduction of ketones. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号