首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We establish sufficient conditions for the -stability of the trivial solution of an essentially nonlinear equation of the nth order.  相似文献   

2.
Consideration herein is the stability issue of a variety of superpositions of the Camassa–Holm peakons and antipeakons in the dynamics of the two-component Camassa–Holm system, which is derived in the shallow water theory. These wave configurations accommodate the ordered trains of the Camassa–Holm peakons, the ordered trains of Camassa–Holm antipeakons and peakons as well as the Camassa–Holm multi-peakons. Using the features of conservation laws and the monotonicity properties of the local energy, we prove the orbital stability of these wave profiles in the energy space by the modulation argument.  相似文献   

3.
At rest the muscles which control the urethra (urine duct) are contracted and its lumen is practically equal to zero over its entire length. To open the urethra, a mechanical effort (due, for example, to a pressure rise in the bladder) must be applied. Reduced contractile activity of the muscles may be one of the reasons for incontinence (enuresis). A widespread method of estimating the blocking capability of the urethra consists in inserting a catheter with lateral perforations near the end. The catheter enters the bladder and is then removed at a constant velocity while a fluid is constantly pumped (infused) into it by a syringe pump at a steady rate and then flows out through the gap between the catheter and the urethral wall. The pumping pressure is considered to be a local measure of the blocking capability, and its dependence on the location of the catheter is regarded as an important diagnostic characteristic.Below, we will consider the simple, longitudinally homogeneous model system formed by an elastic tube pulled over a catheter segment when the initial stresses in the tube are constant over its length. An incompressible viscous fluid flows out of the perforations and percolates in a thin layer along the catheter. In solving the model problem, we will use the lubricating layer approximation under the assumption of small layer curvature. On the basis of an analysis of the results and a comparison of the model with a practical intraurethral measurement procedure, we discuss, firstly, the relationship between the measured quantities and the real characteristics of the urethra and, secondly, the possible formulation of a more realistic model problem.  相似文献   

4.
We solve the time-dependent simple shear flow of a Johnson–Segalman fluid with added Newtonian viscosity. We focus on the case where the steady-state shear stress/shear rate curve is not monotonic. We show that, in addition to the standard smooth linear solution for the velocity, there exists, in a certain range of the velocity of the moving plate, an uncountable infinity of steady-state solutions in which the velocity is piecewise linear, the shear stress is constant and the other stress components are characterized by jump discontinuities. The stability of the steady-state solutions is investigated numerically. In agreement with linear stability analysis, it is shown that steady-state solutions are unstable only if the slope of a linear velocity segment is in the negative-slope regime of the shear stress/shear rate curve. The time-dependent solutions are always bounded and converge to a stable steady state. The number of the discontinuity points and the final value of the shear stress depend on the initial perturbation. No regimes of self-sustained oscillations have been found.  相似文献   

5.
The slow migration of a small and solid particle in the vicinity of a gas–liquid, fluid–fluid or solid–fluid plane boundary when subject to a gravity or an external flow field is addressed. By contrast with previous works, the advocated approach holds for arbitrarily shaped particles and arbitrary external Stokes flow fields complying with the conditions on the boundary. It appeals to a few theoretically established and numerically solved boundary-integral equations on the particle’s surface. This integral formulation of the problem allows us to provide asymptotic approximations for a distant boundary and also, implementing a boundary element technique, accurate numerical results for arbitrary locations of the boundary. The results obtained for spheroids, both settling or immersed in external pure shear and straining flows, reveal that the rigid-body motion experienced by a particle deeply depends upon its shape and also upon the boundary location and properties.  相似文献   

6.
7.
The boundaryvalue problem of waves on the surface of a twophase medium with a nonuniform (exponential) distribution of the disperse phase is formulated. An asymptotic solution of the linear problem in the form of damped progressive waves is obtained. The phase velocity, frequency, and damping decrement for the waves are found. The perturbation of the admixture concentration is determined, which, unlike in the case of a uniform distribution, is manifested even in a linear approximation. Numerical calculations were performed for concrete media.  相似文献   

8.
This paper outlines our research on a multimode warhead in which we adopted center point and annular initiation modes to form multimode penetrators. Using LS-DYNA software, we studied the effect of the configuration parameters, namely the length/diameter ratio of the shaped charge, on the formation parameters, such as the velocity and length/diameter ratio, of multimode penetrators. We found that when the charge length was in the range of 0.9–1.2 times the charge diameter, the same structure of shaped charge can form suitable multimode penetrators. Either an explosively formed penetrator (EFP) or a long stretchy rod-shaped EFP penetrator can be formed. We establish an optimum charge length for penetrator formation of 1.4 times the charge diameter. Simulation results were validated using X-ray imaging experiments and they were in good agreement. The results found that by increasing the charge length from 0.9 to 1.4 times the charge diameter, the penetration depth of the EFP increased by 74.5%, while increasing the charge length from 1.4 to 1.6 times the charge diameter only increased the penetration depth by 1.9%.  相似文献   

9.
10.
The dynamic behavior of a magma melt filling a slot channel (crack) in a closed explosive hydrodynamic structure is considered. The explosive hydrodynamic structure includes the volcano focal point with a connected vertical channel (conduit) closed by a slug and a system of internal cracks (dikes) near the dome, as well as a crater open into the atmosphere. A two-dimensional model of a slot eruption is constructed with the use of the Iordanskii–Kogarko–van Wijngaarden mathematical model of two-phase media and the kinetics that describes the basic physical processes in a heavy magma saturated by the gas behind the decompression wave front. A numerical scheme is developed for analyzing the influence of the boundary conditions on the conduit walls and scale factors on the melt flow structure, the role of viscosity in static modes, and dynamic formulations with allowance for diffusion processes and increasing (by several orders of magnitude) viscosity. Results of the numerical analysis of the initial stage of cavitation process evolution are discussed.  相似文献   

11.
We present a computational study evaluating the effectiveness of the nonlinear Galerkin method for dissipative evolution equations. We begin by reviewing the theoretical estimates of the rate of convergence for both the standard spectral Galerkin and the nonlinear Galerkin methods. We show that the rate of convergence in both cases depends mainly on how well the basis functions of the spectral method approximate the elements in the space of solutions. This in turn depends on the degree of smoothness of the basis functions, the smoothness of the solutions, and on the level of compatibility at the boundary between the basis functions of the spectral method and the solutions. When the solutions are very smooth inside the domain and very compatible with the basis functions at the boundary, there may be little advantage in using the nonlinear Galerkin method. On the other hand, for less smooth solutions or when there is less compatibility at the boundary with the basis functions, there is a significant improvement in the rate of convergence when using the nonlinear Galerkin method. We demonstrate the validity of our assertions with numerical simulations of the forced dissipative Burgers equation and of the forced Kuramoto-Sivashinsky equation. These simulations also demonstrate that the analytical upper bounds derived for the rates of convergence of both the standard Galerkin and the nonlinear Galerkin are nearly sharp.This work was supported in part by the National Science Foundation, AFOSR Grant No. F49620-92-J-0287, and the Joint University of California-Los Alamos National Laboratory Institute for Cooperative Research (INCOR) Program for Climate Modeling. Partial support has also come from the Department of Energy Computer Hardware, Advanced Mathematics, Model Physics (CHAMMP) research program as part of the U.S. Global Change Research Program.  相似文献   

12.
We show that a smooth solution u 0 of the Euler boundary value problem on a time interval (0, T 0) can be approximated by a family of solutions of the Navier–Stokes problem in a topology of weak or strong solutions on the same time interval (0, T 0). The solutions of the Navier–Stokes problem satisfy Navier’s boundary condition, which must be “naturally inhomogeneous” if we deal with the strong solutions. We provide information on the rate of convergence of the solutions of the Navier–Stokes problem to the solution of the Euler problem for ν → 0. We also discuss possibilities when Navier’s boundary condition becomes homogeneous.  相似文献   

13.
We consider a surface S = (), where 2 is a bounded, connected, open set with a smooth boundary and : 3 is a smooth map; let () denote the components of the two-dimensional linearized strain tensor of S and let 0 with length 0 > 0. We assume the the norm ,|| ()||0, in the space V0() = { H1() × H1() × L2(); = 0 on 0 } is equivalent to the usual product norm on this space. We then establish that this assumption implies that the surface S is uniformly elliptic and that we necessarily have 0 = .  相似文献   

14.
The entropy of a plane curve is defined in terms of the number of intersection points with a random line. The Gibbs distribution which maximizes the entropy enables one to define the temperature of the curve. At 0 temperature, the curve reduces to a straight segment. At high temperature, the curve is somewhat chaotic and behaves like a perfect gas. We attempt to show that thermodynamic formalism can be used for the study of plane curves. The curves we discuss have finite length, unlike Mandelbrot's fractal curves [1], yet we feel our approach to the mathematics is not far from his.  相似文献   

15.
We investigate the behavior of the deformations of a thin shell, whose thickness δ tends to zero, through a decomposition technique of these deformations. The terms of the decomposition of a deformation v are estimated in terms of the L 2-norm of the distance from v to SO(3). This permits in particular to derive accurate nonlinear Korn’s inequalities for shells (or plates). Then we use this decomposition technique and estimates to give the asymptotic behavior of the Green-St Venant’s strain tensor when the “strain energy” is of order less than δ 3/2.  相似文献   

16.
We generalize the spectral Sturm–Liouville method for the solution of the biharmonic equation. The characteristic equation for the determination of eigenvalues is investigated and eigenfunctions are constructed. We determine the stress-strain state for a rectangular plate loaded by arbitrary forces on its sides. For an arbitrary external load, we obtain a relation for the stress-strain state in the form of a series in eigenfunctions. A method of integral moments for the determination of the coefficients of the series is proposed. The Saint-Venant principle is verified.  相似文献   

17.
The stress–strain state in the alveolar bone crest is analyzed over a wide range of stiffness ratios between the bone and the primary strut of the subperiosteal implant. Recommendations on the rational design of subperiosteal implants are given  相似文献   

18.
We consider the phenomenon of suppression of short waves by a long wave, observed by Mitsuyasu in 1966. The recently proposed [1] essentially 3-D explanation of this phenomenon is reviewed and compared with more traditional 2-D explanations. Several physical implications of this 3-D explanation are suggested and the experimental verification is discussed.  相似文献   

19.
Numerical simulation and control of self- propelled swimming of two- and three-dimensional biomimetic fish school in a viscous flow are investigated. With a parallel computational fluid dynamics package for the two- and three-dimensional moving boundary problem, which combines the adaptive multi-grid finite volume method and the methods of immersed boundary and volume of fluid, it is found that due to the interactions of vortices in the wakes, without proper control, a fish school swim with a given flap- ping rule can not keep the fixed shape of a queue. In order to understand the secret of fish swimming, a new feedback con- trol strategy of fish motion is proposed for the first time, i,e., the locomotion speed is adjusted by the flapping frequency of the caudal, and the direction of swimming is controlled by the swinging of the head of a fish. Results show that with this feedback control strategy, a fish school can keep the good order of a queue in cruising, turning or swimming around circles. This new control strategy, which separates the speed control and direction control, is important in the construction of biomimetic robot fish, with which it greatly simplifies the control devices of a biomimetic robot fish.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号