首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Solid polymer electrolytes based on polyacrylonitrile (PAN) doped with ammonium thiocyanate (NH4SCN) in different molar ratios of polymer and salt have been prepared by solution-casting method using DMF as solvent. The increase in amorphous nature of the polymer electrolytes has been confirmed by XRD analysis. A shift in glass transition temperature (T g) of the PAN?:?NH4SCN electrolytes has been observed from the DSC thermograms which indicates the interaction between the polymer and the salt. From the AC impedance spectroscopic analysis, the ionic conductivity has been found to increase with increasing salt concentration up to 30 mol% of NH4SCN beyond which the conductivity decreases and the highest ambient temperature conductivity has been found to be 5.79?×?10?3 S cm?1. The temperature-dependent conductivity of the polymer electrolyte follows an Arrhenius relationship which shows hopping of ions in the polymer matrix. The dielectric loss curves for the sample 70 mol% PAN?:?30 mol% NH4SCN reveal the low-frequency β-relaxation peak pronounced at high temperature, and it may be caused by side group dipoles. The ionic transference number of polymer electrolyte has been estimated by Wagner’s polarization method, and the results reveal that the conductivity species are predominantly ions.  相似文献   

2.
A solid polymer blend electrolyte is prepared using poly(vinyl acetate) (PVAc) and poly(methyl methacrylate) (PMMA) polymers with different molecular weight percentage (wt%) of ammonium thiocyanate (NH4SCN) by solution casting technique with tetrahydrofuran (THF) as a solvent. The structural, morphological, vibrational, thermal and electrical properties of the prepared polymer blend electrolytes have been studied. The incorporation of NH4SCN into the polymeric matrix causes decrease in the degree of crystallinity of the samples. The complex formation between the polymer and salt has been confirmed by FTIR technique. The increase in T g with increase in salt concentration has been investigated. The maximum conductivity of 3.684?×?10?3 S cm?1 has been observed for the composition of 70PVAc/30PMMA/30 wt% of NH4SCN at 303 K. This value of ionic conductivity is five orders of magnitude greater than that of 70PVAc/30PMMA polymer membrane. Dielectric and transport studies have been done. The highest conducting polymer electrolyte is used to fabricate proton battery with the configuration Zn/ZnSO4·7H2O (anode) ||polymer electrolyte||PbO2/V2O5 (cathode). The open circuit voltage of the fabricated battery is 1.83 V, and its performance has been studied.  相似文献   

3.
Proton-conducting polymer electrolyte comprising of poly(N-vinyl pyrrolidone) (PVP) and ammonium thiocyanate (NH4SCN) are prepared by solvent casting method with different polymer–salt concentrations. The changes in the Raman spectra with increasing NH4SCN concentration state that the free ion concentration is maximum for 20 mol% NH4SCN concentrated system. At higher salt concentrations (25 mol%), the effective number of charge carriers decreases due to the formation of ion aggregates as confirmed by the Raman analysis. Solid-state NMR and MAS NMR studies are performed to obtain the information about the ionic structure, mobility of the charge carriers, and also to gain insight into the polymer–salt interactions in the polymer electrolytes. The results of ionic transference number show that the charge transport in these polymer electrolytes is mainly due to ions.  相似文献   

4.
Sodium ion conducting solid polymer blend electrolyte thin films have been prepared by using polyvinyl alcohol (PVA)/poly(vinyl pyrrolidone) (PVP) with NaNO3 by solution cast technique. The prepared films were characterized by various methods. The complexation of the salt with the polymer blend was identified by X-ray diffraction (XRD) and Fourier transforms infrared spectroscopy (FTIR), Differential scanning calorimetry was used to analyze the thermal behavior of the samples, and the glass transition temperature is low for the highest conducting polymer material. The scanning electron microscopy gives the surface morphology of the polymer electrolytes. The frequency and temperature dependent of electrical conductivities of the films were studied using impedance analyzer in the frequency range of 1 Hz to 1 MHz. The highest electrical conductivity of 50PVA/50PVP/2 wt% NaNO3 concentration has been found to be 1.25 × 10?5 S cm?1 at room temperature. The electrical permittivity of the polymer films have been studied for various temperatures. The transference number measurements showed that the charge transport is mainly due to ions than electrons. Using this highest conducting polymer electrolyte, an electrochemical cell is fabricated and the parameters of the cells are tabulated.  相似文献   

5.
The proton conducting solid-state polymer electrolyte comprising blend of poly(vinyl alcohol) (PVA) and poly(N-vinylimidazole) (PVIM), ammonium tetrafluoroborate (NH4BF4) as salt, and polyethylene glycol (PEG) (molecular weight 300 and 600) as plasticizer is prepared at various compositions by solution cast technique. The prepared films are characterized by Fourier transform infrared spectroscopy, differential scanning calorimetry, X-ray diffraction, and scanning electron microscopy analysis. The conductivity–temperature plots are found to follow an Arrhenius nature. The conductivity of solid polymer electrolytes is found to depend on salt and plasticizer content and also on the dielectric constant value and molecular weight of the plasticizer. Maximum ionic conductivity values of 2.20?×?10?4 and 1.28?×?10?4?S?cm?1 at 30 °C are obtained for the system (PVA–PVIM)?+?20 wt.% NH4BF4?+?150 wt.% PEG300 and (PVA–PVIM)?+?20 wt.% NH4BF4?+?150 wt.% PEG300, respectively. The blended polymer, complexed with salt and plasticizer, is shown to be a predominantly ionic conductor. The proton transport in the system may be expected to follow Grotthuss-type mechanism.  相似文献   

6.
Blending of polymers is one of the most useful methods for modulating the conductivity of solid polymer electrolytes. Blend polymer electrolytes have been prepared with polyvinyl alcohol (PVA)-polyacrylonitrile (PAN) blend doped with ammonium thiocyanate with different concentrations by solution casting technique, using dimethyl formamide (DMF) as the solvent. The prepared electrolytes are characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), nuclear magnetic resonance (NMR), ultraviolet (UV), and ac impedance measurement techniques. The increase in amorphous nature of the blend polymer electrolyte by the addition of salt is confirmed by XRD analysis. The complex formation between the polymers and the salt has been confirmed by FTIR analysis. The thermal behavior has been examined using DSC and TGA. The maximum conductivity has been found to be 2.4?×?10?3 S cm?1 for 92.5PVA/7.5PAN/25 % NH4SCN sample at room temperature. The temperature dependence of conductivity has been studied with the help of Arrhenius plot, and the activation energies are calculated. The proton conductivity is confirmed by dc polarization measurement technique. 1H NMR studies reveal the presence of protons in the sample. A proton battery is constructed with the highest conducting sample, and its open circuit voltage is measured to be 1.2 V  相似文献   

7.
The proton-conducting polymer electrolytes based on poly (N-vinylpyrrolidone) (PVP), doped with ammonium chloride (NH4Cl) in different molar ratios, have been prepared by solution-casting technique using distilled water as solvent. The increase in amorphous nature of the polymer electrolytes has been confirmed by XRD analysis. The FTIR analysis confirms the complex formation of the polymer with the salt. A shift in glass transition temperature (T g) of the PVP/NH4Cl electrolytes has been observed from the DSC thermograms which indicates the interaction between the polymer and the salt. From the AC impedance spectroscopic analysis, the ionic conductivity of 15?mol% NH4Cl-doped PVP polymer complex has been found to be maximum of the order of 2.51?×?10?5?Scm?1 at room temperature. The dependence of T g and conductivity upon salt concentration has been discussed. The linear variation of the proton conductivity of the polymer electrolytes with increasing temperature suggests the Arrhenius type thermally activated process. The activation energy calculated from the Arrhenius plot for all compositions of PVP doped with NH4Cl has been found to vary from 0.49 to 0.92?eV. The dielectric loss curves for the sample 85?mol% PVP:15?mol% NH4Cl reveal the low-frequency ?? relaxation peak pronounced at high temperature, and it may be caused by side group dipoles. The relaxation parameters of the electrolytes have been obtained by the study of Tan?? as a function of frequency.  相似文献   

8.
Dextran-chitosan blend added with ammonium thiocyanate (NH4SCN)-based solid polymer electrolytes are prepared by solution cast method. The interaction between the components of the electrolyte is verified by Fourier transform infrared (FTIR) analysis. The blend of 40 wt% dextran-60 wt% chitosan is found to be the most amorphous ratio. The room temperature conductivity of undoped 40 wt% dextran-60 wt% chitosan blend film is identified to be (3.84?±?0.97)?×?10?10 S cm?1. The inclusion of 40 wt.% NH4SCN to the polymer blend has optimized the room temperature conductivity up (1.28?±?0.43)?×?10?4 S cm?1. Result from X-ray diffraction (XRD) and differential scanning calorimetry (DSC) analysis shows that the electrolyte with the highest conductivity value has the lowest degree of crystallinity (χ c) and the glass transition temperature (T g), respectively. Temperature-dependence of conductivity follows Arrhenius theory. From transport analysis, the conductivity is noticed to be influenced by the mobility (μ) and number density (n) of ions. Conductivity trend is further verified by field emission scanning electron microscopy (FESEM) and dielectric results.  相似文献   

9.
Poly (acrylonitrile) (PAN) and ammonium chloride (NH4Cl)-based proton conducting polymer electrolytes with different compositions have been prepared by solution casting technique. The amorphous nature of the polymer electrolytes has been confirmed by XRD analysis. The FTIR analysis confirms the complex formation of the host polymer (PAN) with the salt (NH4Cl). DSC measurements show a decrease in Tg with the increase in salt concentration. The conductivity analysis shows that the 25 mol% ammonium chloride doped polymer electrolyte has a maximum ionic conductivity, and it has been found to be 6.4 × 10?3 Scm?1, at room temperature. The temperature dependence of conductivity of the polymer electrolyte complexes appears to obey the Arrhenius nature. The activation energy (Ea = 0.23 eV) has been found to be low for 25 mol% salt doped polymer electrolyte. The dielectric behavior has been analyzed using dielectric permittivity (ε*), and the relaxation frequency (τ) has been calculated from the loss tangent spectra (tan δ). Using this maximum ionic conducting polymer electrolyte, the primary proton conducting battery with configuration Zn + ZnSO4·7H2O/75 PAN:25 NH4Cl/PbO2 + V2O5 has been fabricated and their discharge characteristics have been studied.  相似文献   

10.
Besides commercially available synthetic polymers, the present work has been undertaken to explore the significance of poly(glycerol suberate) (PGS) polyester synthesised under lab scale in energy storage device. In this regard, a blend polymer electrolyte comprising of polyvinyl alcohol (PVA), poly(glycerol suberate) (PGS) polyester along with the various proportions of ammonium thiocyanate (NH4SCN) was prepared adopting solution casting technique. The synthesised polyester PGS was characterised by Fourier transform infrared (FT-IR) spectroscopy, 1H and 13C nuclear magnetic resonance (NMR) spectroscopy. The prepared electrolyte film was subjected to FT-IR analysis to study the complexation that has occurred within the blend. Its amorphous nature was revealed from X-ray diffraction (XRD) studies. Influence of NH4SCN on the glass transition temperature (Tg) was drawn from differential scanning calorimetry (DSC) technique. The dispersion of dopant within the polymer matrix was supported by scanning electron microscopy (SEM) followed by its elemental composition from energy dispersive spectroscopy (EDS). From the AC impedance technique, maximum conductivity of 3.01?×?10?4 S cm?1 was elicited for the optimised electrolyte (1 g PVA?+?0.75 g PGS?+?0.6 g NH4SCN). Frequency-dependent dielectric and modulus spectra were analysed to study the mechanism of transportation. Transport parameters evaluated by Wagner’s polarisation method proved that the conductivity was predominantly due to cations. Proton conducting battery was configured with the highest conducting electrolytic film and its cell parameters are presented.  相似文献   

11.
Solid polymer electrolytes (SPEs) based on poly (vinyl chloride)/poly (ethyl methacrylate) [PVC/PEMA] blend complexed with zinc triflate [Zn(CF3SO3)2] salt have been prepared using solution casting technique. Thin film samples containing various blend ratios of PVC/PEMA with fixed composition of salt have been examined by means of complex impedance analysis, and as a consequence, the typical composition corresponding to PVC (30 wt%)/PEMA (70 wt%) has been identified as the optimized blend exhibiting the highest room temperature ionic conductivity of 10?8 Scm?1. The ionic conductivity of the optimized blend was further enhanced from 10?8 to 10?6 Scm?1 by adding the chosen salt in different weight percentages at 301 K. The occurrence of complexation of the polymer blend and an evidence of interaction of cations, namely Zn2+ ions with the polymer blend, have been confirmed by Attenuated total reflectance-Fourier transformed infrared (ATR-FTIR) spectroscopy measurement studies. The efficacy of ion-polymer interactions was estimated by means of an evaluation of transport number data pertaining to Zn2+ ions which was found to be 0.56. The apparent changes resulting in the structural properties of these polymer electrolytes possessing a honeycomb-like microporous structure were identified using X-ray diffraction (XRD) and scanning electron microscopic (SEM) studies. Such promising features of the present polymer blend electrolyte system appear to suggest possible fabrication of new rechargeable zinc batteries involving improved device characteristics.  相似文献   

12.
Proton-conducting solid polymer blend electrolytes based on methylcellulose-polyvinyl alcohol:ammonium nitrate (MC-PVA:NH4NO3) were prepared by the solution cast technique. The structural and electrical properties of the samples were examined by X-ray diffraction (XRD), Fourier transform infrared (FTIR), and electrical impedance (EI) spectroscopy. The shifting and change in the intensity of FTIR bands of the electrolyte samples confirm the complex formation between the MC-PVA polymer blend and the NH4NO3 added salt. The observed broadening in the XRD pattern of the doped samples reveals the increase of the amorphous fraction of polymer electrolyte samples. The increase in electrical conductivity of polymer electrolyte samples with increasing salt concentration attributed to the formation of charge-transfer complexes, and to increase in the amorphous domains. A maximum ionic conductivity of about 7.39 × 10?5 S cm?1 was achieved at room temperature for the sample incorporating 20 wt% of NH4NO3. The DC conductivity of the present polymer system exhibits Arrhenius-type dependence with temperature. The decrease in the values of activation energies with increasing salt concentration indicates the ease mobility of ions. The decrease in dielectric constant with increasing frequency was observed at all temperatures. Optical properties such as absorption edge, optical band gap, and tail of localized state were estimated for polymer blend and their electrolyte films. It was found that the optical band gap values shifted towards lower photon energy from 6.06 to 4.75 eV by altering the NH4NO3 salt content.  相似文献   

13.
Proton-conducting polymer electrolytes based on poly vinyl alcohol (PVA; 88% hydrolyzed) and ammonium iodide (NH4I) has been prepared by solution casting method with different molar ratios of polymer and salt using DMSO as solvent. DMSO has been chosen as a solvent due its high dielectric constant and also its plasticizing nature. The ionic conductivity has been found to increase with increasing salt concentration up to 25 mol% beyond which the conductivity decreases and the highest ambient temperature conductivity has been found to be 2.5×10−3 S cm−1. The conductivity enhancement with addition of NH4I has been well correlated with the increase in amorphous nature of the films confirmed from XRD and differential scanning calorimetry (DSC) analyses. The temperature-dependent conductivity follows the Arrhenius relation. The polymer-proton interactions have been analyzed by FTIR spectroscopy.  相似文献   

14.
Structural, thermal, electrical and electrochemical behaviour of polymer blend electrolytes comprising polyvinyl alcohol (PVA) and polyvinyl pyrrolidone (PVP) as host polymers and Mg(ClO4)2 as dopant salt have been investigated. The changes in the structural properties on the incorporation of dopant in the blends were investigated by XRD and FTIR analyses. Thermal properties of pure PVA–PVP blend and their complexes were examined by DSC to measure how the thermal transitions of the prepared films were affected by different concentration of Mg(ClO4)2. The ionic conductivity and dielectric behaviour were explored using A.C. impedance spectroscopy. The trend of ionic conductivity increases almost proportionally to the content of magnesium salt and can be related to an increase of amorphous phase at high level of dopant salt. The electrochemical stability of the optimum conducting blend polymer electrolyte is found to be ~3.5 V. The Mg2+ transference number for the sample with optimized conductivity was found to be 0.31.  相似文献   

15.
An attempt has been made in the present work to combine gel and composite polymer electrolyte routes together to form a composite polymeric gel electrolyte that is expected to possess high ionic conductivity with good mechanical integrity. Polyethylene glycol (PEG) based composite gel electrolytes using polyvinyl alcohol (PVA) as guest polymer have been synthesized with 1 molar solution of ammonium thiocyanate (NH4SCN) in dimethyl sulphoxide (DMSO) and electrically characterized. The ionic conductivity measurements indicate that PEG:PVA:NH4SCN-based composite gel electrolytes are superior (σ max = 5.7 × 10−2 S cm−1) to pristine electrolytes (PEG:NH4SCN system) and conductivity variation with filler concentration remains within an order of magnitude. The observed conductivity maxima have been correlated to PEG:PVA:NH4SCN-and PVA:NH4SCN-type complexes. Temperature dependence of conductivity profiles exhibits Arrhenius behaviour in low temperature regime followed by VTF character at higher temperature.   相似文献   

16.
An attempt has been made to prepare and characterise ammonium thiocyanate (NH4SCN) salt and a multiwall carbon nanotube (MWNT)-doped polyvinyl alcohol-based nanofibre mats using an electrospinning process. The X-ray diffraction result shows an improvement in the amorphous nature of composite electrolyte fibre mats with increasing concentrations of the MWNT filler. The DSC behaviour of these nanofibre mat exhibits better thermal response upon dispersal of the filler. Composite electrolyte nanofibre mat doped with 6 wt% MWNT shows optimum conductivity, viz., 5.8?×?10?4 Scm?1. The temperature dependence of the bulk electrical conductivity displays a combination of Arrhenius and Vogel–Tammam–Fulcher nature. Dielectric loss studies have also been used to understand the conduction process in the system. Jonscher power law seems to be obeyed during ac conductivity measurements of the fibre mats.  相似文献   

17.
A series of conducting thin-film solid electrolytes based on poly (vinyl alcohol)/ poly (vinyl pyrrolidone) (PVA/PVP) polymer blend was prepared by the solution casting technique. PVA and PVP were mixed in various weight percent ratios and dissolved in 20 ml of distilled water. The samples were analyzed by using impedance spectroscopy in the frequency range between 100 Hz and 1 MHz. The PVA/PVP system with a composition of 80% PVA and 20 wt.% PVP exhibits the highest conductivity of (2.2±1.4) × 10−7 Scm−1. The highest conducting PVA/PVP blend was then further studied by adding different amounts of potassium hydroxide (KOH) ionic dopant. Water has been used as solvent to prepare PVA/PVP-KOH based alkaline solid polymer blend electrolyte films. The conductivity was enhanced to (1.5 ± 1.1) × 10−4 Scm−1 when 40 wt.% KOH was added. Paper presented at the International Conference on Functional Materials and Devices 2005, Kuala Lumpur, Malaysia, June 6 – 8, 2005.  相似文献   

18.
Polymer electrolyte system based on poly(vinyl alcohol) (PVA)-chitosan blend doped with ammonium bromide (NH4Br) has been prepared by solution cast method. Fourier transform infrared (FTIR) spectroscopy analysis confirms the complexation between salt and polymer host. The highest ionic conductivity obtained at room temperature is (7.68?±?1.24)?×?10?4 S cm?1 for the sample comprising of 30 wt% NH4Br. X-ray diffraction (XRD) patterns reveal that PVA-chitosan with 30 wt% NH4Br exhibits the most amorphous structure. Thermogravimetric analysis (TGA) reveals that the electrolytes are stable until ~260 °C. The conductivity variation can also be explained by field emission scanning electron microscopy (FESEM) study. Dielectric properties of the electrolytes follow non-Debye behavior. The conduction mechanism of the highest conducting electrolyte can be represented by the correlated barrier hopping (CBH) model. From linear sweep voltammetry (LSV) result, the highest conducting electrolyte is electrochemically stable at 1.57 V.  相似文献   

19.
An attempt has been made to prepare a new proton-conducting polymer electrolyte based on poly(vinyl alcohol) doped with ammonium fluoride (NH4F) by solution casting technique. The complex formation between polymer and dissociated salt has been confirmed by X-ray diffraction and Fourier transform infrared spectroscopy studies. The highest ionic conductivity has been found to be 6.9?×?10?6?Scm?1 at ambient temperature (303 K) for 85PVA:15NH4F polymer electrolyte. The conductance spectra contain a low frequency plateau region and high frequency dispersion region. The dielectric spectra exhibit the low frequency dispersion, which is due to space charge accumulation at the electrode–electrolyte interface. The modulus spectra indicate non-Debye nature of the material. The highest ionic conductivity polymer electrolyte 85PVA:15NH4F has low activation energy 0.2 eV among the prepared polymer electrolytes.  相似文献   

20.
Polymer blended films of polyethylene oxide (PEO)?+?polyvinyl pyrrolidone (PVP):lithium perchlorate (LiClO4) embedded with silver (Ag) nanofiller in different concentrations have been synthesized by a solution casting method. The semi-crystalline nature of these polymer films has been confirmed from their X-ray diffraction (XRD) profiles. Fourier transform infrared spectroscopy (FTIR) and Raman analysis confirmed the complex formation of the polymer with dopant ions. Dispersed Ag nanofiller size evaluation study has been done using transmission electron microscopy (TEM) analysis. It was observed that the conductivity increases when increasing the Ag nanofiller concentration. On the addition of Ag nanofiller to the polyethylene oxide (PEO)?+?polyvinyl pyrrolidone (PVP):Li+ electrolyte system, it was found to result in the enhancement of ionic conductivity. The maximum ionic conductivity has been set up to be 1.14?×?10?5 S cm?1 at the optimized concentration of 4 wt% Ag nanofiller-embedded (45 wt%) polyethylene oxide (PEO)?+?(45 wt%) polyvinyl pyrrolidone (PVP):(10 wt%) Li+ polymer electrolyte nanocomposite at room temperature. Polyethylene oxide (PEO)?+?polyvinyl pyrrolidone (PVP):Li+ +Ag nanofiller (4 wt%) cell exhibited better performance in terms of cell parameters. This is ascribed to the presence of flexible matrix and high ionic conductivity. The applicability of the present 4 wt% Ag nanofiller-dispersed polyethylene oxide (PEO)?+?polyvinyl pyrrolidone (PVP):Li+ polymer electrolyte system could be suggested as a potential candidate for solid-state battery applications. Dielectric constants and dielectric loss behaviours have been studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号