首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tao Sun  Jiayu Yu  Qi Yang  Jinxin Ma 《Ionics》2017,23(5):1059-1066
Cu-supported SnO2@C composite coatings constructed by interconnected carbon-based porous branches were fabricated by annealing Cu foils with films formed by knife coating DMF solution containing SnCl2, polyacrylonitrile (PAN), and poly(methyl methacrylate) (PMMA) on their surface in vacuum. The carbon-based porous branches consist of amorphous carbon matrices, SnO2 nanoparticles with a size of 30–100 nm mainly encapsulated inside, and many micropores with a size of 1–5 nm. The three-dimensional (3D) porous network structures of the SnO2@C composite were achieved by volatilization of PMMA and pyrolysis of SnCl2. The SnO2@C composite coatings demonstrate good cyclic performance with a high reversible capacity of 642 mA h g?1 after 100 cycles at a current density of 50 mA g?1 without apparent capacity fading during cycling and excellent rate performance with a capacity of 276 mA h g?1 at a high current density up to 10 A g?1.  相似文献   

2.
In this work, the MWO4 (M = Co, Ni) nanoparticles were successfully synthesized by a facile one-step hydrothermal method and used as novel anode materials for LIBs. The micromorphology of obtained CoWO4 and NiWO4 was uniform nanoparticles with the size of ~60 and ~40 nm, respectively, by structural characterization including X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). When tested as lithium-ion battery anode, CoWO4 nanoparticles exhibited a stabilized reversible capacity of 980 mA h g?1 at 200 mA g?1 after 120 cycles and 632 mA h g?1 at 1000 mA g?1 even after 400 cycles. And, the discharge capacity was as high as 550 mA h g?1 at the 400th cycle for NiWO4 nanoparticles. The excellent electrochemical performance could be attributed to the unique nanoparticles structure of the materials, which can not only shorten the diffusion length for electrons and lithium ions but also provide a large specific surface area for lithium storage.  相似文献   

3.
Nitrogen-doped anatase titanium oxide (N-TiO2) with enhanced electronic conductivity induced by titanium nitride (TiN) thin layer coating was employed as high-performance anode material for sodium-ion batteries. The TiN thin layer can not only dramatically increase the electronic conductivity among crystal grains but also alleviate the volume expansion to consolidate the structure during long-term sodiation and desodiation process. The composite exhibits an excellent electrochemical performance, delivering a high specific capacity of 226.9 mA h g?1 at 0.1 C and owning excellent rate capability of 158.3 mA h g?1 at 10 C high rate. Moreover, the composite has no obvious capacity decay after 500 cycles at 1 C, showing its superior cycling performance. The enhancement of electrochemical performance may be attributed to the faster kinetics of sodium ion sodiation/desodiation, which could be a result of enhanced electronic conductivity due to the formation of TiN thin layer coating.  相似文献   

4.
Hari Raj  Anjan Sil 《Ionics》2018,24(9):2543-2553
Pristine LiFePO4 (LFP) and carbon-coated LiFePO4 (LFP/C) are synthesized by sol-gel process using citric acid as a carbon precursor. LFP/C is prepared with three different stoichiometric ratios of metal ions and citric acid, namely 1:0.5, 1:1, and 1:2. Prepared LFP and LFP/C powder samples are characterized by X-ray diffractometer, field emission scanning electron microscope, transmission electron microscope, and Raman spectrophotometer. Electrochemical performances of pristine and carbon-coated LFP are investigated by charge-discharge and cyclic voltammetry technique. The results show that LFP/C (1:1) with an optimum thickness of 4.2 nm and higher graphitic carbon coating has the highest discharge capacity of 148.2 mA h g?1 at 0.1 C rate and 113.1 mA h g?1 at a high rate of 5 C among all four samples prepared. The sample LFP/C (1:1) shows 96% capacity retention after 300 cycles at 1 C rate. The decrease in discharge capacity (141.4and 105.9 mA h g?1 at 0.1 and 5 C, respectively) is observed for the sample LFP/C (1:2). Whereas, pristine LFP shows the lowest discharge capacity of 111.1 mA h g?1 at 0.1 C and capacity was decreased very fast and work only up to 147 cycles. Moreover, cyclic voltammetry has also revealed the lowest polarization of 0.19 V for LFP/C (1:1) and the highest 0.4 V for pristine LFP.  相似文献   

5.
LiNi0.5Co0.2Mn0.3O2 particles of uniform size were prepared through carbonate co-precipitation method with acacia gum. The precursor of carbonate mixture was calcined at 800 °C, and a well-crystallized Ni-rich layered oxide was got. The phase structure and morphology were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The micro-sized particles delivered high initial discharge capacity of 164.3 mA h g?1 at 0.5 C (1 C?=?200 mA g?1) between 2.5 and 4.3 V with capacity retention of 87.5 % after 100 cycles. High reversible discharge capacities of 172.4 and 131.4 mA h g?1 were obtained at current density of 0.1 and 5 C, respectively. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were performed to further study the LiNi0.5Co0.2Mn0.3O2 particles. Anyway, the excellent electrochemical performances of LiNi0.5Co0.2Mn0.3O2 sample should be attributed to the use of acacia gum.  相似文献   

6.
Inferior rate capability is a big challenge for LiTi2(PO4)3 anode for aqueous lithium-ion batteries. Herein, to address such issue, we synthesized a high-performance LiTi2(PO4)3/carbon/carbon nanotube (LTP/C/CNT) composite by virtue of high-quality carbon coating and incorporation of good conductive network. The as-prepared LTP/C/CNT composite exhibits excellent rate performance with discharge capacity of 80.1 and 59.1 mAh g?1 at 10 C and 20 C (based on the mass of anode, 1 C = 150 mA g?1), much larger than that of the LTP/C composite (53.4 mAh g?1 at 10 C, and 31.7 mAh g?1 at 20 C). LTP/C/CNT also demonstrates outstanding cycling stability with capacity retention of 83.3 % after 1000 cycles at 5 C, superior to LTP/C without incorporation of CNTs (60.1 %). As verified, the excellent electrochemical performance of the LTP/C/CNT composite is attributed to the enhanced electrical conductivity, rapid charge transfer, and Li-ion diffusion because of the incorporation of CNTs.  相似文献   

7.
The poor electronic conductivity and low lithium-ion diffusion are the two major obstacles to the largely commercial application of LiFePO4 cathode material in power batteries. In order to improve the defects of LiFePO4, a novel carbon source polyacrylonitrile (PAN), which would form the hierarchical porous structure after carbonization, is fabricated and used. This work comes up with a simple and facile carbothermal reduction method to prepare porous-carbon-coated LiFePO4 (C-LiFePO4-PC) composite and to study the effect of carbon-coated temperature on ameliorating the electrochemical performance. The obtained C-LiFePO4-PC composite shows a high initial discharge capacity of 164.1 mA h g?1 at 0.1 C and good cycling stability as well as excellent rate capacity (49.0 mA h g?1 at 50 C). The most possible factors that improve the electrochemical performance could be related to the enhancement of electronic conductivity and the existence of porous carbon layers. In a word, the C-LiFePO4-PC material would become an excellent candidate for application in the fields of lithium-ion batteries.  相似文献   

8.
Mn1.5Co1.5O4 hierarchical microspheres have been successfully synthesized via a solvothermal method and an annealing procedure. Mn1.5Co1.5O4 exhibits advanced cycling performance, and it retains a reversible capacity of 633 mA h g?1 at a current density of 400 mA g?1 with a coulombic efficiency of 99.0% after 220 cycles. Its remarkable performance is attributed to the hierarchical structure assembled with nanorods, which increases the contact area between each nanorod and electrolyte. More significantly, the open space between neighboring nanorods and the pores on the surface of nanorods can improve Li+ ion diffusion rate. Furthermore, the nanorods have rapid one-dimensional Li+ diffusion channels, which not only possess a large specific surface area for high activity but accommodate the volume change during lithiation–delithiation processes. Therefore, Mn1.5Co1.5O4 hierarchical microspheres can act as a promising alternative anode material for lithium-ion battery.  相似文献   

9.
A dandelion-like mesoporous Co3O4 was fabricated and employed as anode materials of lithium ion batteries (LIBs). The architecture and electrochemical performance of dandelion-like mesoporous Co3O4 were investigated through structure characterization and galvanostatic charge/discharge test. The as-prepared dandelion-like mesoporous Co3O4 consisted of well-distributed nanoneedles (about 40 nm in width and about 5 μm in length) with rich micropores. Electrochemical experiments illustrated that the as-prepared dandelion-like mesoporous Co3O4 as anode materials of LIBs exhibited high reversible specific capacity of 1430.0 mA h g?1 and 1013.4 mA h g?1 at the current density of 0.2 A g?1 for the first and 100th cycle, respectively. The outstanding lithium storage properties of the as-prepared dandelion-like mesoporous Co3O4 might be attributed to its dandelion-like mesoporous nanostructure together with an open space between adjacent nanoneedle networks promoting the intercalation/deintercalation of lithium ions and the charge transfer on the electrode. The enhanced capacity as well as its high-rate capability made the as-prepared dandelion-like mesoporous Co3O4 to be a good candidate as a high-performance anode material for LIBs.  相似文献   

10.
Cr-doped layered oxides Li[Li0.2Ni0.2???x Mn0.6???x Cr2x ]O2 (x?=?0, 0.02, 0.04, 0.06) were synthesized by co-precipitation and high-temperature solid-state reaction. The materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (TRTEM), X-ray photoelectron spectroscopy (XPS), and electrochemical impedance spectroscopy (EIS). XRD patterns and HRTEM results indicate that the pristine and Cr-doped Li1.2Ni0.2Mn0.6O2 show the layered phase. The Li1.2Ni0.16Mn0.56Cr0.08O2 shows the best electrochemical properties. The first discharge specific capacity of Li1.2Ni0.16Mn0.56Cr0.08O2 is 249.6 mA h g?1 at 0.1 C, while that of Li1.2Ni0.2Mn0.6O2 is 230.4 mA h g?1. The capacity retaining ratio of Li1.2Ni0.16Mn0.56Cr0.08O2 is 97.9% compared with 93.9% for Li1.2Ni0.2Mn0.6O2 after 80 cycles at 0.2 C. The discharge capacity of Li1.2Ni0.16Mn0.56Cr0.08O2 is 126.2 mA h g?1 at 5.0 C, while that of the pristine Li1.2Ni0.2Mn0.6O2 is about 94.5 mA h g?1. XPS results show that the content of Mn3+ in the Li1.2Ni0.2Mn0.6O2 can be restrained after Cr doping during the cycling, which results in restraining formation of spinel-like structure and better midpoint voltages. The lithium-ion diffusion coefficient and electronic conductivity of Li1.2Ni0.2Mn0.6O2 are enhanced after Cr doping, which is responsible for the improved rate performance of Li1.2Ni0.16Mn0.56Cr0.08O2.  相似文献   

11.
V2O5 nanoneedle arrays were grown directly on titanium (Ti) substrate by a facile solvothermal route followed with calcination at 350 °C for 2 h. The as-prepared V2O5 nanoneedles are about 50 nm in diameter and 800 nm in length. The electrochemical behavior of V2O5 nanoarrays as binder-free cathode for lithium-ion batteries (LIBs) was evaluated by cyclic voltammetry and galvanostatic discharge/charge tests. Compared with V2O5 powder electrode, V2O5 nanoneedle arrays electrode exhibited improved electrochemical performance in terms of high discharge capacity of 262.5 mA h g?1 between 2.0 and 4.0 V at 0.2 C, and high capacity retention up to 77.1% after 100 cycles. Under a high current rate of 2 C, a discharge capacity of about 175.6 mA h g?1 can be maintained. The enhanced performance are mainly due to the intimate contact between V2O5 nanoneedle active material and current collector, which enable shortened electron transfer pathway and improved charge transfer kinetics, demonstrating their potential applications in high rate electrochemical storage devices.  相似文献   

12.
The high-voltage spinel LiNi0.5Mn1.5O4 (LNMO) with submicron particle size (LNMO-8505P70010) has been synthesized based on nickel-manganese compound, which is obtained from pre-sintering the nickel-manganese hydroxide precipitation at 850 °C. The LNMO materials based on nickel-manganese hydroxide (LNMO-70010, LNMO-850570010, and LNMO-8501070010) have also been synthesized for comparison to study the pre-sintering impact on the properties of LiNi0.5Mn1.5O4 material. The morphologies and structures of the obtained samples have been analyzed by X-ray powder diffraction and scanning electron microscopy. The nickel-manganese compound has a spinel structure with high crystallinity, making it a good precursor to form high-performance LNMO with lower content of Mn3+ and impurity. The obtained LNMO-8505P70010 delivers discharge capacities of 125.4 mA h g?1 at 0.2 C, and the capacity retention of 15 C reaches 73.8 % of the capacity retention of 0.2? C. Furthermore, it shows a superior cyclability with the capacity retention of 96.4 % after 150 cycles at 5 ?C. Compared with the synthesis method without pre-sintering, the synthesis method with pre-sintering can save energy while reaching the same discharge specific capacity.  相似文献   

13.
Three-dimensional fabricated Fe3O4 quantum dots/graphene aerogel materials (Fe3O4 QDs/GA) were obtained from a facile hydrothermal strategy, followed by a subsequently heat treatment process. The Fe3O4 QDs (2–5 nm) are anchored tightly and dispersed uniformly on the surface of three-dimensional GA. The as-prepared anode materials exhibit a high reversible capacity of 1078 mAh g?1 at a current density of 100 mA g?1 after 70 cycles in lithium-ion batteries (LIBs) system. Moreover, the rate capacity still remains 536 mAh g?1 at 1000 mA g?1. The enhanced electrochemical performance is attributed to that the GA not only acts as a three-dimensional electronic conductive matrix for the fast transportation of Li+ and electrons, but also provides with double protection against the aggregation and pulverization of Fe3O4 QDs during cycling. Apparently, the synergistic effects of the three-dimensional GA and the quantum dots are fully utilized. Therefore, the Fe3O4 QDs/GA composites are promising materials as advanced anode materials for LIBs.  相似文献   

14.
Nanoporous carbon microspheres (NCMs) are prepared by a one-step carbonizing and activating resorcinol?formaldehyde polymer spheres (RFs) in inert and CO2 atmosphere for anode materials of lithium-ion batteries (LIBs). Compared with RFs carbon microspheres (RF-C), after activating with hot CO2, the NCMs with porous structure and high BET surface area of 2798.8 m2 g?1, which provides abundant lithium-ion storage site as well as stable lithium-ion transport channel. When RF-C and NCM are used to anode material for LIBs, at the same current density of 210 mA g?1, the initial specific discharge capacity are 482.4 and 2575.992 mA h g?1, respectively; after 50 cycles, the maintain capacity are 429.379 and 926.654 mA h g?1, respectively. The porous spherical structure of NCM possesses noticeably lithium-ion storage capability, which exhibits high discharge capacity and excellent cycling stability at different current density. The CO2 activating carbonaceous materials used in anode materials can tremendously enhance the capacity storage, which provides a promising modification strategy to improve the storage capacity and cyclic stability of carbonaceous anode materials for LIBs.  相似文献   

15.
To suppress the capacity fade of Li-rich Li1.2Ni0.13Co0.13Mn0.54O2 material as cathode materials for lithium-ion battery, we introduce a LiF coating layer on the surface to improve the cycling performance of Li1.2Ni0.13Co0.13Mn0.54O2 material. The modified sample shows a capacity of 163.2 mAh g?1 with a capacity retention of 95% after 100 cycles at a current density of 250 mA g?1, while the pristine sample only delivers a capacity of 129.9 mAh g?1 with a capacity retention of 82%. Compared with the pristine material, the LiF-modified sample exhibits an obvious enhancement in the electrochemical performance, which will be very beneficial for this material to be commercialized on the new energy vehicles and other related areas.  相似文献   

16.
C/FeOF/FeF3 nanocomposite was synthesized by a facile in situ partial oxidation method. High-resolution transmission electron microscopy (HR-TEM) showed a special texture comprised of interpenetrating nanodomains of FeOF and FeF3. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) measurements revealed that the introduction of nanodomain FeOF enhanced both the electronic and ionic conductivity of the composite material. Therefore, the improvement of electron and lithium-ion dynamics resulted in the significant enhancement of the electrochemical performances of the material at ambient temperature. At a current density of 20 mA g?1 within potential range 1.5–4.5 V, the specific capacities of the first ten circles were maintained at about 400 mAh g?1 . This material also exhibited excellent cycling capacity retention capability especially for high C rates. When the current density further increased to 100 and 200 mA g?1, a steady capacity of 80 and 60 mAh g?1 was observed, respectively. Furthermore, nearly no capacity loss was observed for the followed cycles. The discharge platforms based on intercalation and conversion reaction were also heightened by about 0.4 V, which increased the contribution of high voltage capacities. Compared to C/FeF3, C/FeOF/FeF3 is showing more of capacitive behavior, which also contributes to the high specific capacity delivered and is believed to be closely related to the enlarged nanodomain interfaces between two electrochemical active materials. An expansion-cracking-oxidation mechanism was proposed to explain the formation of this interpenetrating nanodomains of FeOF and FeF3.  相似文献   

17.
Pr-doped Li4Ti5O12 in the form of Li4?x/3Ti5?2x/3PrxO12 (x = 0, 0.01, 0.03, 0.05, and 0.07) was synthesized successfully by an electrospinning technique. ICP shows that the doped samples are closed to the targeted samples. XRD analysis demonstrates that traces of Pr3+ can enlarge the lattice parameter of Li4Ti5O12 from 8.3403 to 8.3765 Å without changing the spinel structure. The increase of lattice parameter is beneficial to the intercalation and de-intercalation of lithium-ion. XPS results identify the existence form of Ti is mainly Ti4+ and Ti3+ in minor quantity in Li4?x/3Ti5?2x/3PrxO12 (x = 0.05) samples due to the small amount of Pr3+. The transition from Ti4+ to Ti3+ is conducive to the electronic conductivity of Li4Ti5O12. FESEM images show that all the nanofibers are well crystallized with a diameter of about 200 nm and distributed uniformly. The results of electrochemical measurement reveal that the 1D Li4?x/3Ti5?2x/3PrxO12 (x = 0.05) nanofibers display enhanced high-rate capability and cycling stability compared with that of undoped nanofibers. The high-rate discharge capacity of the Li4?x/3Ti5?2x/3PrxO12 (x = 0.05) samples is excellent (101.6 mAh g?1 at 50 °C), which is about 58.48 % of the discharge capacity at 0.2 °C and 4.3 times than that of the bare Li4Ti5O12 (23.5 mA g?1). Even at 10 °C (1750 mA g?1), the specific discharge capacity is still 112.8 mAh g?1 after 1000 cycles (87.9 % of the initial discharge capacity). The results of cyclic voltammograms (CV) and electrochemical impedance spectroscopy (EIS) illustrate that the Pr-doped Li4Ti5O12 electrodes possess better dynamic performance than the pure Li4Ti5O12, further confirming the excellent electrochemical properties above.  相似文献   

18.
Titanium dioxide (TiO2)-based materials have been well studied because of the high safety and excellent cycling performance when employed as anode materials for lithium ion batteries (LIBs), whereas, the relatively low theoretical capacity (only 335 mAh g?1) and serious kinetic problems such as poor electrical conductivity (~?10?13S cm?1) and low lithium diffusion coefficient (~?10?9 to 10?13 cm2 s?1) hinder the development of the TiO2-based anode materials. To overcome these drawbacks, we present a facile strategy to synthesize N/S dual-doping carbon framework anchored with TiO2 nanoparticles (NSC@TiO2) as LIBs anode. Typically, TiO2 nanoparticles are anchored into the porous graphene-based sheets with N, S dual doping feature, which is produced by carbonization and KOH activation process. The as-obtained NSC@TiO2 electrode exhibits a high specific capacity of 250 mAh g?1 with a coulombic efficiency of 99% after 500 cycles at 200 mA g?1 and excellent rate performance, indicating its promising as anode material for LIBs.  相似文献   

19.
The Li[Li0.2Mn0.54Ni0.13Co0.13]O2 coated with CeO2 has been fabricated by an ionic interfusion method. Both the bare and the CeO2-coated samples have a typical layered structure with R-3m and C2/m space group. The results of XRD and TEM images display that the CeO2 coating layer on the precursor could enhance the growth of electrochemically active surface planes ((010), (110), and (100) planes) in the following ionic interfusion process. The results of galvanostatic cycling tests demonstrate that the CeO2-coated sample has a discharge capacity of 261.81 mAh g?1 with an increased initial Coulombic efficiency from 62.4 to 69.1% at 0.05 °C compared with that of bare sample and delivers an improved capacity retention from 71.7 to 83.4% after 100 cycles at 1 °C (1 °C?=?250 mA g?1). The results of electrochemical performances confirm that the surface modification sample exhibits less capacity fading, lower voltage decay, and less polarization.  相似文献   

20.
A crystalline structure of LiCoO2 sample was synthesized at different stirring times via sol-gel method. This was followed by the electrochemical characterization of LiCoO2 in 5 M LiNO3 aqueous electrolyte. The hexagonal LiCoO2 was stirred for 30 h produced the highest peak intensity and smallest particle size. A morphological analysis showed the particle size distribution within the range of 0.32–0.47 μm. At lower scan rates of cyclic voltammetry, three pairs of redox peaks at ESCE = 0.81/0.65, 0.89/0.83 and 1.01/0.95 V were observed. The peak separation was proportionally consistent with Li+ diffusion coefficients of 7.42 × 10?8 cm2 s?1 (anodic) and 3.59 × 10?8 cm2 s?1 (cathodic). For specific capacity, the LiCoO2 demonstrated a higher initial specific capacity (115.49 mA h g?1). A small difference (1.92 Ω) in the charge transfer resistance before and after a charge discharge analysis indicated that the Li+ ions had been well-diffused during the intercalation/de-intercalation process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号