首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We apply the theory of generalized polynomial identities with automorphisms and skew derivations to prove the following theorem: Let A be a prime ring with the extended centroid C and with two-sided Martindale quotient ring Q, R a nonzero right ideal of A and \(\delta \) a nonzero \(\sigma \)-derivation of A, where \(\sigma \) is an epimorphism of A. For \(x,y\in A\), we set \([x,y] = xy - yx\). If \([[\ldots [[\delta (x^{n_0}),x^{n_1}],x^{n_{2}}],\ldots ],x^{n_k}]=0\) for all \(x\in R\), where \(n_{0},n_{1},\ldots ,n_{k}\) are fixed positive integers, then one of the following conditions holds: (1) A is commutative; (2) \(C\cong GF(2)\), the Galois field of two elements; (3) there exist \(b\in Q\) and \(\lambda \in C\) such that \(\delta (x)=\sigma (x)b-bx\) for all \(x\in A\), \((b-\lambda )R=0\) and \(\sigma (R)=0\). The analogous result for left ideals is also obtained. Our theorems are natural generalizations of the well-known results for derivations obtained by Lanski (Proc Am Math Soc 125:339–345, 1997) and Lee (Can Math Bull 38:445–449, 1995).  相似文献   

2.
Let \({\mathbb {F}}_q\) be a finite field with q elements such that \(l^v||(q^t-1)\) and \(\gcd (l,q(q-1))=1\), where lt are primes and v is a positive integer. In this paper, we give all primitive idempotents in a ring \(\mathbb F_q[x]/\langle x^{l^m}-a\rangle \) for \(a\in {\mathbb {F}}_q^*\). Specially for \(t=2\), we give the weight distributions of all irreducible constacyclic codes and their dual codes of length \(l^m\) over \({\mathbb {F}}_q\).  相似文献   

3.
Given a weighted graph G on \(n + 1\) vertices, a spanning K-tree \(T_K\) of G is defined to be a spanning tree T of G together with K distinct edges of G that are not edges of T. The objective of the minimum-cost spanning K-tree problem is to choose a subset of edges to form a spanning K-tree with the minimum weight. In this paper, we consider the constructing spanning K-tree problem that is a generalization of the minimum-cost spanning K-tree problem. We are required to construct a spanning K-tree \(T_K\) whose \(n+K\) edges are assembled from some stock pieces of bounded length L. Let \(c_0\) be the sale price of each stock piece of length L and \(k(T_K)\) the number of minimum stock pieces to construct the \(n+K\) edges in \(T_K\). For each edge e in G, let c(e) be the construction cost of that edge e. Our new objective is to minimize the total cost of constructing a spanning K-tree \(T_K\), i.e., \(\min _{T_K}\{\sum _{e\in T_K} c(e)+ k(T_K)\cdot c_0\}\). The main results obtained in this paper are as follows. (1) A 2-approximation algorithm to solve the constructing spanning K-tree problem. (2) A \(\frac{3}{2}\)-approximation algorithm to solve the special case for constant construction cost of edges. (3) An APTAS for this special case.  相似文献   

4.
The group of bisections of groupoids plays an important role in the study of Lie groupoids. In this paper another construction is introduced. Indeed, for a topological groupoid G, the set of all continuous self-maps f on G such that (xf(x)) is a composable pair for every \(x\in G\), is denoted by \(S_G\). We show that \(S_G\) by a natural binary operation is a monoid. \(S_G(\alpha )\), the group of units in \(S_G\) precisely consists of those \(f\in S_G\) such that the map \(x\mapsto xf(x)\) is a bijection on G. Similar to the group of bisections, \(S_G(\alpha )\) acts on G from the right and on the space of continuous self-maps on G from the left. It is proved that \(S_G(\alpha )\) with the compact- open topology inherited from C(GG) is a left topological group. For a compact Hausdorff groupoid G it is proved that the group of bisections of \(G^2\) is isomorphic to the group \(S_G(\alpha )\) and the group of transitive bisections of G, \(Bis_T(G)\), is embedded in \(S_G(\alpha )\), where \(G^2\) is the groupoid of all composable pairs.  相似文献   

5.
For nonnegative integers qnd, let \(A_q(n,d)\) denote the maximum cardinality of a code of length n over an alphabet [q] with q letters and with minimum distance at least d. We consider the following upper bound on \(A_q(n,d)\). For any k, let \(\mathcal{C}_k\) be the collection of codes of cardinality at most k. Then \(A_q(n,d)\) is at most the maximum value of \(\sum _{v\in [q]^n}x(\{v\})\), where x is a function \(\mathcal{C}_4\rightarrow {\mathbb {R}}_+\) such that \(x(\emptyset )=1\) and \(x(C)=\!0\) if C has minimum distance less than d, and such that the \(\mathcal{C}_2\times \mathcal{C}_2\) matrix \((x(C\cup C'))_{C,C'\in \mathcal{C}_2}\) is positive semidefinite. By the symmetry of the problem, we can apply representation theory to reduce the problem to a semidefinite programming problem with order bounded by a polynomial in n. It yields the new upper bounds \(A_4(6,3)\le 176\), \(A_4(7,3)\le 596\), \(A_4(7,4)\le 155\), \(A_5(7,4)\le 489\), and \(A_5(7,5)\le 87\).  相似文献   

6.
Let \(\varGamma \) be a distance-semiregular graph on Y, and let \(D^Y\) be the diameter of \(\varGamma \) on Y. Let \(\varDelta \) be the halved graph of \(\varGamma \) on Y. Fix \(x \in Y\). Let T and \(T'\) be the Terwilliger algebras of \(\varGamma \) and \(\varDelta \) with respect to x, respectively. Assume, for an integer i with \(1 \le 2i \le D^Y\) and for \(y,z \in \varGamma _{2i}(x)\) with \(\partial _{\varGamma }(y,z)=2\), the numbers \(|\varGamma _{2i-1}(x) \cap \varGamma (y) \cap \varGamma (z)|\) and \(|\varGamma _{2i+1}(x) \cap \varGamma (y) \cap \varGamma (z)|\) depend only on i and do not depend on the choice of y, z. The first goal in this paper is to show the relations between T-modules of \(\varGamma \) and \(T'\)-modules of \(\varDelta \). Assume \(\varGamma \) is the incidence graph of the Hamming graph H(Dn) on the vertex set Y and the set \({\mathcal {C}}\) of all maximal cliques. Then, \(\varGamma \) satisfies above assumption and \(\varDelta \) is isomorphic to H(Dn). The second goal is to determine the irreducible T-modules of \(\varGamma \). For each irreducible T-module W, we give a basis for W the action of the adjacency matrix on this basis and we calculate the multiplicity of W.  相似文献   

7.
The anti-Ramsey number, AR(nG), for a graph G and an integer \(n\ge |V(G)|\), is defined to be the minimal integer r such that in any edge-colouring of \(K_n\) by at least r colours there is a multicoloured copy of G, namely, a copy of G that each of its edges has a distinct colour. In this paper we determine, for large enough \(n,\, AR(n,L\cup tP_2)\) and \(AR(n,L\cup kP_3)\) for any large enough t and k, and a graph L satisfying some conditions. Consequently, we determine AR(nG), for large enough n, where G is \(P_3\cup tP_2\) for any \(t\ge 3,\, P_4\cup tP_2\) and \(C_3\cup tP_2\) for any \(t\ge 2,\, kP_3\) for any \(k\ge 3,\, tP_2\cup kP_3\) for any \(t\ge 1,\, k\ge 2\), and \(P_{t+1}\cup kP_3\) for any \(t\ge 3,\, k\ge 1\). Furthermore, we obtain upper and lower bounds for AR(nG), for large enough n, where G is \(P_{k+1}\cup tP_2\) and \(C_k\cup tP_2\) for any \(k\ge 4,\, t\ge 1\).  相似文献   

8.
In this paper, we study the torsion subgroup and rank of elliptic curves for the subfamilies of \(E_{m,p} : y^2=x^3-m^2x+p^2\), where m is a positive integer and p is a prime. We prove that for any prime p, the torsion subgroup of \(E_{m,p}(\mathbb {Q})\) is trivial for both the cases {\(m\ge 1\), \(m\not \equiv 0\pmod 3\)} and {\(m\ge 1\), \(m \equiv 0 \pmod 3\), with \(gcd(m,p)=1\)}. We also show that given any odd prime p and for any positive integer m with \(m\not \equiv 0\pmod 3\) and \(m\equiv 2\pmod {32}\), the lower bound for the rank of \(E_{m,p}(\mathbb {Q})\) is 2. Finally, we find curves of rank 9 in this family.  相似文献   

9.
We continue the study of additive functions \(f_k:R\rightarrow F \;(1\le k\le n)\) linked by an equation of the form \(\sum _{k=1}^n p_k(x)f_k(q_k(x))=0\), where the \(p_k\) and \(q_k\) are polynomials, R is an integral domain of characteristic 0, and F is the fraction field of R. A method is presented for solving all such equations. We also consider the special case \(\sum _{k=1}^n x^{m_k}f_k(x^{j_k})=0\) in which the \(p_k\) and \(q_k\) are monomials. In this case we show that if there is no duplication, i.e. if \((m_k,j_k)\ne (m_p,j_p)\) for \(k\ne p\), then each \(f_k\) is the sum of a linear function and a derivation of order at most \(n-1\). Furthermore, if this functional equation is not homogeneous then the maximal orders of the derivations are reduced in a specified way.  相似文献   

10.
We study generalizations of the classical Bernstein operators on the polynomial spaces \(\mathbb {P}_{n}[a,b]\), where instead of fixing \(\mathbf {1}\) and x, we reproduce exactly \(\mathbf {1}\) and a polynomial \(f_1\), strictly increasing on [ab]. We prove that for sufficiently large n, there always exist generalized Bernstein operators fixing \(\mathbf {1}\) and \(f_1\). These operators are defined by non-decreasing sequences of nodes precisely when \(f_1^\prime > 0\) on (ab), but even if \(f_1^\prime \) vanishes somewhere inside (ab), they converge to the identity.  相似文献   

11.
The packing chromatic number \(\chi _{\rho }(G)\) of a graph G is the smallest integer k such that the vertex set of G can be partitioned into sets \(V_i\), \(i\in [k]\), where each \(V_i\) is an i-packing. In this paper, we investigate for a given triple (abc) of positive integers whether there exists a graph G such that \(\omega (G) = a\), \(\chi (G) = b\), and \(\chi _{\rho }(G) = c\). If so, we say that (abc) is realizable. It is proved that \(b=c\ge 3\) implies \(a=b\), and that triples \((2,k,k+1)\) and \((2,k,k+2)\) are not realizable as soon as \(k\ge 4\). Some of the obtained results are deduced from the bounds proved on the packing chromatic number of the Mycielskian. Moreover, a formula for the independence number of the Mycielskian is given. A lower bound on \(\chi _{\rho }(G)\) in terms of \(\Delta (G)\) and \(\alpha (G)\) is also proved.  相似文献   

12.
In this paper, s-\({\text {PD}}\)-sets of minimum size \(s+1\) for partial permutation decoding for the binary linear Hadamard code \(H_m\) of length \(2^m\), for all \(m\ge 4\) and \(2 \le s \le \lfloor {\frac{2^m}{1+m}}\rfloor -1\), are constructed. Moreover, recursive constructions to obtain s-\({\text {PD}}\)-sets of size \(l\ge s+1\) for \(H_{m+1}\) of length \(2^{m+1}\), from an s-\({\text {PD}}\)-set of the same size for \(H_m\), are also described. These results are generalized to find s-\({\text {PD}}\)-sets for the \({\mathbb {Z}}_4\)-linear Hadamard codes \(H_{\gamma , \delta }\) of length \(2^m\), \(m=\gamma +2\delta -1\), which are binary Hadamard codes (not necessarily linear) obtained as the Gray map image of quaternary linear codes of type \(2^\gamma 4^\delta \). Specifically, s-PD-sets of minimum size \(s+1\) for \(H_{\gamma , \delta }\), for all \(\delta \ge 3\) and \(2\le s \le \lfloor {\frac{2^{2\delta -2}}{\delta }}\rfloor -1\), are constructed and recursive constructions are described.  相似文献   

13.
Let \(k>-1\). The sum of the kth powers of the primes less than x is asymptotic to \(\pi (x^{k+1})\). We show that the sum is less than \(\pi (x^{k+1})\) for arbitrarily large x, and the reverse inequality also holds for arbitrarily large x. When \(k>0\), there is a bias toward the first inequality, and we explain why this should be true and why the reverse bias holds when \(-1<k<0\).  相似文献   

14.
Assign to each vertex v of the complete graph \(K_n\) on n vertices a list L(v) of colors by choosing each list independently and uniformly at random from all f(n)-subsets of a color set \([n] = \{1,\dots , n\}\), where f(n) is some integer-valued function of n. Such a list assignment L is called a random (f(n), [n])-list assignment. In this paper, we determine the asymptotic probability (as \(n \rightarrow \infty \)) of the existence of a proper coloring \(\varphi \) of \(K_n\), such that \(\varphi (v) \in L(v)\) for every vertex v of \(K_n\). We show that this property exhibits a sharp threshold at \(f(n) = \log n\). Additionally, we consider the corresponding problem for the line graph of a complete bipartite graph \(K_{m,n}\) with parts of size m and n, respectively. We show that if \(m = o(\sqrt{n})\), \(f(n) \ge 2 \log n\), and L is a random (f(n), [n])-list assignment for the line graph of \(K_{m,n}\), then with probability tending to 1, as \(n \rightarrow \infty \), there is a proper coloring of the line graph of \(K_{m,n}\) with colors from the lists.  相似文献   

15.
Let R be a non-commutative prime ring, Z(R) its center, Q its right Martindale quotient ring, C its extended centroid, \(F\ne 0\) an b-generalized skew derivation of R, L a non-central Lie ideal of R, \(0\ne a\in R\) and \(n\ge 1\) a fixed integer. In this paper, we prove the following two results:
  1. 1.
    If R has characteristic different from 2 and 3 and \(a[F(x),x]^n=0\), for all \(x\in L\), then either there exists an element \(\lambda \in C\), such that \(F(x)=\lambda x\), for all \(x\in R\) or R satisfies \(s_4(x_1,\ldots ,x_4)\), the standard identity of degree 4, and there exist \(\lambda \in C\) and \(b\in Q\), such that \(F(x)=bx+xb+\lambda x\), for all \(x\in R\).
     
  2. 2.
    If \(\mathrm{{char}}(R)=0\) or \(\mathrm{{char}}(R) > n\) and \(a[F(x),x]^n\in Z(R)\), for all \(x\in R\), then either there exists an element \(\lambda \in C\), such that \(F(x)=\lambda x\), for all \(x\in R\) or R satisfies \(s_4(x_1,\ldots ,x_4)\).
     
  相似文献   

16.
17.
The rank of a scattered \({\mathbb F}_q\)-linear set of \({{\mathrm{{PG}}}}(r-1,q^n)\), rn even, is at most rn / 2 as it was proved by Blokhuis and Lavrauw. Existence results and explicit constructions were given for infinitely many values of r, n, q (rn even) for scattered \({\mathbb F}_q\)-linear sets of rank rn / 2. In this paper, we prove that the bound rn / 2 is sharp also in the remaining open cases. Recently Sheekey proved that scattered \({\mathbb F}_q\)-linear sets of \({{\mathrm{{PG}}}}(1,q^n)\) of maximum rank n yield \({\mathbb F}_q\)-linear MRD-codes with dimension 2n and minimum distance \(n-1\). We generalize this result and show that scattered \({\mathbb F}_q\)-linear sets of \({{\mathrm{{PG}}}}(r-1,q^n)\) of maximum rank rn / 2 yield \({\mathbb F}_q\)-linear MRD-codes with dimension rn and minimum distance \(n-1\).  相似文献   

18.
Let \(G=\mathbf{C}_{n_1}\times \cdots \times \mathbf{C}_{n_m}\) be an abelian group of order \(n=n_1\dots n_m\), where each \(\mathbf{C}_{n_t}\) is cyclic of order \(n_t\). We present a correspondence between the (4n, 2, 4n, 2n)-relative difference sets in \(G\times Q_8\) relative to the centre \(Z(Q_8)\) and the perfect arrays of size \(n_1\times \dots \times n_m\) over the quaternionic alphabet \(Q_8\cup qQ_8\), where \(q=(1+i+j+k)/2\). In view of this connection, for \(m=2\) we introduce new families of relative difference sets in \(G\times Q_8\), as well as new families of Williamson and Ito Hadamard matrices with G-invariant components.  相似文献   

19.
Let q be a power of a prime p, and let \(r=nk+1\) be a prime such that \(r\not \mid q\), where n and k are positive integers. Under a simple condition on q, r and k, a Gauss period of type (nk) is a normal element of \({\mathbb {F}}_{q}^{n}\) over \({\mathbb {F}}_q\); the complexity of the resulting normal basis of \({\mathbb {F}}_{q}^{n}\) over \({\mathbb {F}}_q\) is denoted by C(nkp). Recent works determined C(nkp) for \(k\le 7\) and all qualified n and q. In this paper, we show that for any given \(k>0\), C(nkp) is given by an explicit formula except for finitely many primes \(r=nk+1\) and the exceptional primes are easily determined. Moreover, we describe an algorithm that allows one to compute C(nkp) for the exceptional primes \(r=nk+1\). Our numerical results cover C(nkp) for \(k\le 20\) and all qualified n and q.  相似文献   

20.
We study the positive-definiteness of a family of \(L^2(\mathbb {R})\) integral operators with kernel \(K_{t, a} (x, y) = \pi ^{-1} (1 + (x - y)^2+ a(x^2 + y^2)^t)^{-1}\), for \(t > 0\) and \(a > 0\). For \(0 < t \le 1\) and \(a > 0\), the known theory of positive-definite kernels and conditionally negative-definite kernels confirms positive-definiteness. For \(t > 1\) and a sufficiently large, the integral operator is not positive-definite. For t not an integer, but with integer odd part, the integral operator is not positive-definite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号