首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Yurong Zhang  Yanyan Zhao 《Ionics》2011,17(5):457-461
Li0.94Mg0.03MnPO4/C composite cathode materials for lithium ion battery with different carbon contents are synthesized by sol–gel method followed by heat treatment in the air. Environmental scanning electron microscopy measurements show that both firing temperature and carbon content affect the morphology of the end products. X-ray powder diffraction analysis indicates that the samples are olivine-structured. The galvanostatic charge–discharge results show that the optimal firing temperature registers 400 °C and that the electrochemical performances of Li0.94Mg0.03MnPO4/C are improved by elevating its carbon amount. The sample with an initial conductive carbon content of 20 wt.% gives the best performances; when tested at the rate of 0.02C, 0.1C, and 1.0C between 2.8 and 4.4 V, its initial discharge capacity reaches 145.8, 103.0, and 72.8 mAhg−1, respectively, and maintains at 100.1, 77.6, and 65.4 mAhg−1, respectively, after 100 cycles.  相似文献   

2.
A comparison of electrochemical performance between LiFe0.4Mn0.595Cr0.005PO4/C and LiMnPO4/C cathode materials was conducted in this paper. The cathode samples were synthesized by a nano-milling-assisted solid-state process using caramel as carbon sources. The prepared samples were investigated by XRD, SEM, TEM, energy-dispersive X-ray spectroscopy (EDAX), powder conductivity test (PCT), carbon-sulfur analysis, electrochemical impedance spectroscopy (EIS), and galvanostatic charge-discharge cycling. The results showed that LiFe0.4Mn0.595Cr0.005PO4/C exhibited high specific capacity and high energy density. The initial discharge capacity of LiFe0.4Mn0.595Cr0.005PO4/C was 163.6 mAh g?1 at 0.1C (1C = 160 mA g?1), compared to 112.3 mAh g?1 for LiMnPO4/C. Moreover, the Fe/Cr-substituted sample showed good cycle stability and rate performance. The capacity retention of LiFe0.4Mn0.595Cr0.005PO4/C was 98.84 % over 100 charge-discharge cycles, while it was only 86.64 % for the pristine LiMnPO4/C. These results indicated that Fe/Cr substitution enhanced the electronic conductivity for the prepared sample and facilitated the Li+ diffusion in the structure. Furthermore, LiFe0.4Mn0.595Cr0.005PO4/C composite presented high energy density (606 Wh kg?1) and high power density (574 W kg?1), thus suggested great potential application in lithium ion batteries (LIBs).  相似文献   

3.
The structure and morphology of sodium vanadium phosphate (Na3V2(PO4)3) play a vital role in enhancing the electrochemical performance of sodium-ion batteries due to the inherent poor electronic conductivity of the phosphate framework. In order to improve this drawback, a new chrysanthemum-structured Na3V2(PO4)3/C material has been successfully assembled with multi-hierarchical nanosheets via a hydrothermal method. Continuous scattering nanosheets in chrysanthemum petals are beneficial in reducing energy consumption during the process of sodium ion diffusion, on which the carbon-coated surface can significantly increase overall conductivity. The as-prepared sample exhibits outstanding electrochemical performance due to its unique structure. It rendered a high initial specific capacity of 117.4?mAh?g?1 at a current density of 0.05 C. Further increasing the current density to 10 C, the initial specific capacity still achieves 101.3?mAh?g?1 and remains at 87.5?mAh?g?1 after 1000 cycles. In addition, a symmetrical sodium-ion full battery using the chrysanthemum-structured Na3V2(PO4)3/C materials as both the cathode and anode has been successfully fabricated, delivering the capacity of 62?mAh?g?1 at 1?C and achieving the coulombic efficiency at an average of 96.4% within 100 cycles. These results indicate that the new chrysanthemum-structured Na3V2(PO4)3/C can provide a new idea for the development of high-performance sodium-ion batteries.  相似文献   

4.
A hierarchically nanospherical α-Fe2O3/graphene composite with a homogeneous mono-pore size of 4 nm has been prepared using a hydrothermal method. The composite showed an extremely high rate performance and good cycling stability when applied as an anode material for lithium-ion batteries owing to its unique three dimensional architecture. A specific capacity of 110 mAh/g was obtained at an extremely high current rate of 40 A/g and recover to 830 mAh/g at 0.5 A/g after 60 cycles. After 250 cycles at 2 A/g, the composite electrode exhibited a capacity of 630 mAh/g with a columbic efficiency of 99.5 %.  相似文献   

5.
We demonstrated the effect of ZnO (different wt%)-coated LiMnPO4-based cathode materials for electrochemical lithium ion batteries. ZnO-coated LiMnPO4 cathode materials were prepared by the sol-gel method. X-ray diffraction (XRD) analysis indicates that there is no change in structure caused by ZnO coating, and field emission scanning electron microscopy (FESEM) images depict the closely packed particles. Galvanostatic charge-discharge tests show the ZnO-coated LiMnPO4 sample has an enhanced electrochemical performance as compared to pristine LiMnPO4. The 2 wt% of ZnO-based LiMnPO4 exhibited maximum discharge capacity of 102.2 mAh g?1 than pristine LiMnPO4 (86.2 mAh g?1) and 1 wt% of ZnO-based LiMnPO4 (96.3 mAh g?1). The maximum cyclic stability of 96.3 % was observed in 2 wt% of ZnO-based LiMnPO4 up to 100 cycles. This work exhibited a promising way to develop a surface-modified LiMnPO4 using ZnO for enhanced electrochemical performance in device application.  相似文献   

6.
The Li3V2(PO4)3/C (LVP/C) cathode materials for lithium-ion batteries were synthesized via ethylene glycol-assisted solvothermal method. The phase composition, phase transition temperature, morphology, and fined microstructure were studied using X-ray diffraction (XRD), differential thermal analyzer (DTA), scanning electron microscope (SEM), and transmission electron microscope (TEM), respectively. The electrochemical properties, impedance, and electrical conductivity of LVP/C cathode materials were tested by channel battery analyzer, the electrochemical workstation, and the Hall test system, respectively. The results shown that the appropriate amount of water added to ethylene glycol solvent contributes to the synthesis of pure phase LVP. The LVP10/C cathode material can exhibit discharge capacities of 128, 126, 126, 123, 124, and 114 mAh g?1 at 0.1, 0.5, 2, 5, 10, and 20 C in the voltage range of 3.0–4.3 V, respectively. Meanwhile, it shows also a stable cycling performance with the capacity retention of 89.6% after 180 cycles at 20 C.  相似文献   

7.
The cathode materials, pristine Li2MnSiO4 and carbon-coated Li2MnSiO4 (Li2MnSiO4/C), were synthesized by the sol–gel method. Power X-ray diffraction and scanning electron microscopy analyses show that the presence of carbon during synthesis can weaken the formation of impurities in the final product and decrease the particle size of the final product. The effects of carbon coating on electrochemical characteristics were investigated by galvanostatic cycling test and electrochemical impedance spectroscopy. The galvanostatic cycling test results indicate that Li2MnSiO4/C cathode exhibits better electrochemical performance with an initial discharge capacity of 134.4 mAh g−1 and a capacity retention of 63.9 mAh g−1 after 20 cycles. Electrochemical impedance analyses confirm that carbon coating can increase electronic conductivity, which results in good electrochemical performance of Li2MnSiO4/C cathode. The two semicircles and the large arc obtained in this study can be attributed to the migration of lithium ions through the solid electrolyte interphase films, the electronic properties of the material, and the charge transfer step, respectively.  相似文献   

8.
Carbon-coated olivine-structured LiFe0.5Co0.5PO4 solid solution was synthesized by a facile rheological phase method and applied as cathode materials of lithium-ion batteries. The nanostructure’s properties, such as morphology, component, and crystal structure for the samples, characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Brunauer, Emmett, and Teller (BET) determination, X-ray photoelectron spectroscopy (XPS), and the electrochemical performances were evaluated using constant current charge/discharge tests and electrochemical impedance spectroscopy (EIS). The results indicate that nanoplatelet- and nanorod-structured LiFe0.5Co0.5PO4/C composites were separately obtained using stearic acid or polyethylene glycol 400 (PEG400) as carbon source, and the surfaces of particles for the two samples are ideally covered by full and uniform carbon layer, which is beneficial to improving the electrochemical behaviors. Electrochemical tests verify that the nanoplatelet LiFe0.5Co0.5PO4/C shows a better capacity capability, delivering a discharge specific capacity of 133.8, 112.1, 98.3, and 74.4 mAh g?1 at 0.1, 0.5, 1, and 5 C rate (1 C?=?150 mA g?1); the corresponding cycle number is 5th, 11th, 15th, 20th, and 30th, respectively, whereas the nanorod one possesses more excellent cycling ability, with a discharge capacity of 83.3 mAh g?1 and capacity retention of 86.9% still maintained after cycling for 100 cycles at 0.5 C. Results from the present study demonstrate that the LiFe0.5Co0.5PO4 solid solution nanomaterials with favorable carbon coating effect combine the characteristics and advantage of LiFePO4 and LiCoPO4, thus displaying a tremendous potential as cathode of lithium-ion battery.  相似文献   

9.
A series of Li3V2(PO4)3/C composite cathodes have been prepared by the organic solvent replacement drying method. Five kinds of organic solvent including ethyl alcohol, butyl alcohol, 2-methoxyethanol, 1,2-propylene glycol, and ethylene glycol were used in the drying process to replace the water respectively. Powder X-ray diffraction (XRD), scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS), and galvanostatic charge-discharge tests were employed to analyze the crystal structure, morphology, and electrochemical properties of the as-prepared materials. The results show that the organic solvent has a great influence on the secondary particle size of the as-synthesized materials. Special emphasis is placed on the sample prepared with 1,2-propylene glycol, which has the smallest average particle size and uniform distribution, thus leading to the best high rate performance and long-term cycling stability. The electrode exhibits average specific discharge capacities of 127.6, 128.3, 127.7, 126.7, 125.5, 124.4, 121.9, and 117.0 mAh g?1 at 0.1, 0.2, 0.5, 1, 3, 5, 10, and 20C, respectively. More encouragingly, this sample delivers an outstanding cycle life with capacity retention of up to 94.68% even after 1000 cycles at 20C. Moreover, EIS results demonstrate that this sample has the minimum resistance and the largest apparent lithium ion diffusion coefficient (1.569 × 10?7 cm2 s?1) which can facilitate to the Li+ diffusion during the charge/discharge process. Our results indicate that this preparation strategy can be facile and versatile for the synthesis of other high-rate and high-capacity intercalation materials.  相似文献   

10.
Spinel-type LiNi0.5Mn1.5O4 (LNMO) cathode materials for lithium ion batteries have been synthesized via a modified oxalate co-precipitation method. By virtue of the co-precipitation of Li+ with transition metal ions, the target materials can be obtained through one-pot reaction without subsequent mixing with lithium salts. What’s more, a uniform distribution between the lithium and transition metal ions at molecular level could be realized, which is beneficial for final electrochemical performances. The physical and electrochemical properties of the material are characterized by XRD, TGA, EDS, FT-IR, SEM, CV, EIS, and charge/discharge tests. The results prove that the as-prepared material owns a cubic spinel structure with a space group of Fd-3m, high crystallinity, uniform particle size, and excellent electrochemical performances. A higher initial capacity and superior rate performance are delivered compared with that of material by conventional co-precipitation method. High capacities of 131.7 and 104.0 mAh g?1 could be displayed at 0.5 and 10 C, respectively. Excellent cycle stability is also demonstrated with more than 98.5 % capacity retention after 100 cycles at 1 C.  相似文献   

11.
The graphene nanoflakes and olivine-type LiFe0.97Ni0.03PO4/C (LFNP3/C) samples have been synthesized as anode and cathode materials, respectively. Physicochemical characterization of the graphene nanoflakes and LFNP3/C material were studied using X-ray diffraction (XRD) and scanning electron microscope (SEM). The XRD patterns reveal the formation of the pure phase of both the synthesized samples. SEM micrographs disclose the formation of spherically shaped nanosized particles for LFNP3/C while graphene shows flake-type morphology. CR2032 half and full coin cells were assembled for electrochemical testing of the synthesized samples. Cyclic voltammetry (CV) results indicate that the graphene-based half-cells, i.e., GN1H and GN2H, possess reduction peak/plateau around 0.17 V while LFNP3/C cathode shows discharging voltage plateau at 3.4 V vs. Li/Li+. The discharge capacities were found to be 700, 900, and 153 mAhg?1 for GN1H, GN2H, and LFNP3/C half-cells vs. Li/Li+, respectively. Among full cells, LFPGN1F with γ = 0.75 (mass/capacity balancing factor) shows better charging/discharging profile at each C-rate as compared to LFPGN2F with γ = 0.55. LFPGN1F delivered an initial discharge capacity of around 154 mAhg?1 at 0.1C and even at a high discharge rate of 1C, it retained ~97% of the discharge capacity as compared to the initial cycle at the same rate.  相似文献   

12.
A novel approach of double hydroxide-mediated synthesis of nickel cobaltite (NiCo2O4) electro-active material by the hydrothermal method is reported. The obtained NiCo2O4 electro-active material displays the spinel cubic phase and hexagonal-like morphology. Thermogravimetry analysis confirms the thermal stability of the electrode material. The functional groups and phase formation of NiCo2O4 have been confirmed by FT-IR and Raman spectral analysis. The modified NiCo2O4 electrode exhibits the highest specific capacitance of 767.5 F g?1 at a current density of 0.5 A g?1 in 3 M KOH electrolyte and excellent cyclic stability (94 % capacitance retention after 1000 cycles at a high current density of 5 A g?1). The excellent electrochemical performance of the electrode is attributed to the hexagonal-like morphology, which contributes to the rich surface electro-active sites and easy transport pathway for the ions during the electrochemical reaction. The attractive Faradic behavior of NiCo2O4 electrode has been ascribed to the redox contribution of Ni2+/Ni3+ and Co2+/Co3+ metal species in the alkaline medium. The symmetrical two-electrode cell has been fabricated using the NiCo2O4 electro-active material with excellent electrochemical properties for supercapacitor applications.  相似文献   

13.
Multilayer X-ray mirrors that are based on La/B4C and La/B9C and intended for the reflection of X-ray radiation in the spectral region near λ = 6.7 nm are prepared and studied. Reflection coefficients at a level of 40–60% are achieved for mirrors with various periods. The difference in the interlayer roughnesses reconstructed from the data measured in the hard and soft X-ray spectral regions is explained using a structural model with an asymmetric permittivity profile in a mirror period. A proximate technique is developed to estimate the permittivity profile in a multilayer-structure period using reflectometry data. The effect of antidiffusion Sn, Cr, and Mo barriers on the reflection coefficient of multilayer La/B4C structures is studied experimentally  相似文献   

14.
We report on a continuous-wave Nd:YVO4 oscillator at 1342 nm based on the combination of a grown-together composite crystal YVO4/Nd:YVO4/YVO4 and the 888 nm diode-laser direct pumping for the first time. At the absorbed pump power of 102 W, a maximum average output power of 37.2 W at 1342 nm was obtained, corresponding to an optical-optical conversion efficiency of 36.5% and a high slope efficiency of 63.0%, respectively. To the best of our knowledge, this is the highest output power ever obtained for a 1342 nm Nd:YVO4 oscillator.  相似文献   

15.
Passively Q-switched yellow output from a frequency-doubled self-stimulating Raman composite Nd:YVO4/YVO4 laser using a Cr:YAG saturable absorber is reported. Maximum yellow output power of 264 mW was obtained with corresponding diode to yellow conversion efficiency of 5.9%.  相似文献   

16.
In order to improve the rate capability of Li4Ti5O12, Ti4O7 powder was successfully fabricated by improved hydrogen reduction method, then a dual-phase composite Li4Ti5O12/Ti4O7 has been synthesized as anode material for lithium-ion batteries. It is found that the Li4Ti5O12/Ti4O7 composite shows higher reversible capacity and better rate capability compared to Li4Ti5O12. According to the charge-discharge tests, the Li4Ti5O12/Ti4O7 composite exhibits excellent rate capability of 172.3 mAh g?1 at 0.2 C, which is close to the theoretical value of the spinel Li4Ti5O12. More impressively, the reversible capacity of Li4Ti5O12/Ti4O7 composite is 103.1 mAh g?1 at the current density of 20 C after 100th cycles, and it maintains 84.8% of the initial discharge capacity, whereas that of the bare spinel Li4Ti5O12 is only 22.3 mAh g?1 with a capacity retention of 31.1%. The results indicate that Li4Ti5O12/Ti4O7 composite could be a promising anode material with relative high capacity and good rate capability for lithium-ion batteries.  相似文献   

17.
AlF3-coating is attempted to improve the performance of LiNi0.5Mn1.5O4 cathode materials for Li-ion batteries. The prepared powders are characterized by scanning electron microscope, powder X-ray diffraction, charge/discharge, and impedance. The coated LiNi0.5Mn1.5O4 samples show higher discharge capacity, better rate capability, and higher capacity retention than the uncoated samples. Among the coated samples, 1.0 mol% AlF3-coated sample shows highest capacity after charge–discharged at 30 mA/g for 3 cycles, but 4.0 mol% coated sample exhibits the highest capacity and cycling stability when cycled at high rate of 150 and 300 mA/g. The 40th cycle discharge capacity at 300 mA/g current still remains 114.8 mAh/g for 4.0 mol% AlF3-coated LiNi0.5Mn1.5O4, while only 84.3 mAh/g for the uncoated sample.  相似文献   

18.
Although LiFePO4/C has been successfully put into practical use in lithium-ion batteries equipped on new energy vehicles, its unsatisfactory low temperature results in poor low performance of lithium-ion batteries, leading to a much smaller continue voyage course at extreme environments with low temperature for electric vehicles. In this paper, the electrochemical performance of the LiFePO4/C prepared by polyol route was investigated at a temperature range from 25 to ?20 °C. Compared to commercial ones, as-prepared LiFePO4/C shows a much better low-temperature performance with a reversible capacity of 30 mA h g?1 even at 5 C under ?20 °C and a capacity retention of 91.1 % after 100 cycles at 0.1 C under 0 °C. Moreover, high-resolution transmission electron microscopy (HRTEM) revealed that this outstanding performance at low temperatures could be assigned to uniform carbon coating and the nano-sized particles with a highly crystalline structure.  相似文献   

19.
Ultra-low dielectric permittivity poly (methyl methacrylate)/Fe3O4 composite fiber membranes have been successfully prepared using electrospinning. The composite membranes were characterized by SEM (scanning electron microscopy), TEM (transmission electron microscopy), FT-IR (Fourier transform infrared), XRD (X-ray diffraction) and a radio frequency (RF) impedance/capacitance material analyzer. The magnetic measurement showed that the composite membranes displayed the super-paramagnetic property. The results showed that the dielectric permittivity of the composite fiber membranes was decreasing with increasing Fe3O4 nanoparticle content.  相似文献   

20.
Output power dependences of composite Nd3+:YVO4 Raman laser stationary generation on the longitudinal diode pump power are measured at different transmissions of the output mirror at the Stokes radiation frequency. The deviation of the measured dependences from linear is explained by the influence of thermal effects on both the overlap of the beams and diffraction losses. A method to estimate the laser and Stokes losses in the cavity and the parameters characterizing the overlap of the laser radiation with the pump and Stokes beams is proposed. A Stokes-component of power 2.1 W is obtained and corresponds to 12% diode-to-Stokes efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号