首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present work, a novel blend polymer electrolyte membrane using poly(vinyl acetate) (PVAc), poly(methyl methacrylate) (PMMA), and lithium per chlorate (LiClO4) in different compositions has been prepared by the solution-casting technique. Their chemical, structural characters, thermal behavior, surface morphology, and ionic conductivity were studied using Fourier transform infrared spectroscopy, X-ray diffraction, thermogravimetric/differential thermal analyzer, scanning electron microscopy, and AC impedance analyzer, respectively. A maximum ionic conductivity value of 1.67 × 10−4 S/cm at 303 K is obtained for PVAc–PMMA–LiClO4 complexes in the ratio of 25 × 75, keeping LiClO4 constant as 10 wt.% among all the compositions studied.  相似文献   

2.
Proton-conducting polymer electrolyte comprising of poly(N-vinyl pyrrolidone) (PVP) and ammonium thiocyanate (NH4SCN) are prepared by solvent casting method with different polymer–salt concentrations. The changes in the Raman spectra with increasing NH4SCN concentration state that the free ion concentration is maximum for 20 mol% NH4SCN concentrated system. At higher salt concentrations (25 mol%), the effective number of charge carriers decreases due to the formation of ion aggregates as confirmed by the Raman analysis. Solid-state NMR and MAS NMR studies are performed to obtain the information about the ionic structure, mobility of the charge carriers, and also to gain insight into the polymer–salt interactions in the polymer electrolytes. The results of ionic transference number show that the charge transport in these polymer electrolytes is mainly due to ions.  相似文献   

3.
Polymer electrolytes, which hold the key of successful operation of all solid state ionic devices, have been investigated. An amorphous polymer was used to facsimile fast ion transport in the gel polymer electrolytes (GPE) and room temperature conductivity >10−3 S/cm can be attained. Further, these electrolytes were transformed into composites by dispersing inorganic particles of γ-Al2O3 (11 nm in size) in varying wt.%. An enhancement in the conductivity for an optimum concentration using LiClO4 as a salt can be obtained and is described in terms of free charge carrier concentration, while the other family of Lithium salts viz. LiTf, LiIm, LiBETI decreases the conductivity marginally. FTIR spectroscopy supports the observed decrease in terms of more association between fillers and salts. It has been realized that the mechanical integrity of these composites increases manifold, without affecting the conductivity, significantly.  相似文献   

4.
Poly(nitriles) are among the polymer matrices providing high salt solubility and, in some cases, superionic lithium conductivity at ambient temperatures observed in highly concentrated solvent-free polymer electrolytes. However, the properties of these electrolytes in which ionic aggregation prevails remain difficult to reproduce and predict, as current theories do not adequately model their attributes. The development of new concepts for ion transport in highly concentrated solid polymer electrolytes (SPEs) requires a better understanding of the fundamentals of structure formation in a polymer–salt system over a wide concentration range including salt precipitation. In an attempt to approach this goal, a series of fundamental studies was carried out on the systems based on a rubbery random copolymer of butadiene and acrylonitrile (abbreviated as PBAN). In the present work, LiBr with monatomic halide anion was used as a lithium salt. The effect of LiBr concentration (0.05 to 3.35 mol kg?1) on phase composition, ion–molecular interactions, glass transition temperature, and ionic conductivity was studied by optical microscopy, FTIR, X-ray diffraction, DSC, and impedance measurements. The results were compared with those of PBAN–LiClO4 and PBAN–LiAsF6 studied previously. Low salt solubility and separation of a metastable cubic CsCl-type polymorph of LiBr were established. The highest conductivity of ~10?4 S cm?1 at >50 °C was observed for heterogeneous samples comprising this phase. While the conductivity of PBAN–LiBr was lower than that of PBAN–LiClO4 and PBAN–LiAsF6, this study provides a new insight into the nature of polymer electrolyte systems.  相似文献   

5.
Weighted-density approximations (WDAs), which are based on the weighting function for the second-order direct correlation functions (DCFs) of the uniform polymeric fluids, have been developed to investigate the structural and thermodynamic properties of polymer melts at interfaces. The advantage is the simplicity of calculation of the weighting functions and their accuracies in the applications. They were applied to study the local density distributions and adsorption isotherms of the freely jointed tangent hard-sphere chain, Yukawa chain, and hard-sphere chain mixture in slit pores. The polymer reference interaction model (PRISM) integral equation with the Percus–Yevick (PY) closure has been used to calculate the second-order DCF of the polymeric fluids required as inputs. The mean-field approximation (MFA) has been used to calculate the weighting function for the attractive contribution of a freely jointed tangent Yukawa chain fluid, having attraction among the beads. The calculated results show that (i) for the freely jointed tangent hard-sphere chain, the present theory is in excellent agreement with the computer simulations over a wide range of chain lengths and bulk densities, (ii) the WDA approach for the attraction provides an accurate method for the local density distributions of a freely jointed tangent Yukawa chain fluid, and that (iii) the present theory also yields a reasonably good result for the structural properties of the freely jointed hard-sphere chain mixtures composed of the chain and monomer.  相似文献   

6.
Zheng Zhong  Qi Cao  Xianyou Wang  Na Wu  Yan Wang 《Ionics》2012,18(1-2):47-53
Composite nanofibrous membranes based on poly (vinyl chloride) (PVC)?Cpoly (methyl methacrylate) (PMMA) were prepared by electrospinning and then they were soaked in liquid electrolyte to form polymer electrolytes (PEs). The introduction of PMMA into the PVC matrix enhanced the compatibility between the polymer matrix and the liquid electrolyte. The composite nanofibrous membranes prepared by electrospinning involved a fully interconnected pore structure facilitating high electrolyte uptake and easy transport of ions. The ion conductivity of the PEs increased with the increase in PMMA content in the blend and the ion conductivity of the polymer electrolyte based on PVC?CPMMA (5:5, w/w) blend was 1.36?×?10?3 S cm?1 at 25?°C. The polymer electrolyte based on PVC?CPMMA (5:5, w/w) blend presented good electrochemical stability up to 5.0?V (vs. Li/Li+) and good interfacial stability with the lithium electrode. The promising results showed that nanofibrous PEs based on PVC?CPMMA were of great potential application in polymer lithium-ion batteries.  相似文献   

7.
Electrical transport properties of a series of NaBF4 salt-doped PVC–polyethylene oxide blend polymer electrolytes are studied using impedance spectroscopy. X-ray diffraction, Fourier transform infrared spectroscopy, and differential scanning calorimetry are implemented to characterize the structural properties of the electrolytes. The characterization data clearly indicate that the interaction between the dopant salt and the polymer host substantially influences the overall crystallinity of the electrolytes. Experimental frequency-dependent complex conductivity and loss tangent data are analyzed using a physical model to extract separately the mobile ion concentration and ion mobility of the charge carriers and the type of their thermal activation. The average hopping length of free ions, which essentially controls the macroscopic ion transport within the electrolytes, is found to be strongly correlated to the network structure of the electrolytes. Both the dc conductivity and free ion mobility are observed to be strongly coupled with the segmental dynamics of blend polymer host over the entire range of ion content studied.  相似文献   

8.
Polyvinylidene difluoride (PVDF)–lithium bis(oxalato)borate (LiBOB) solid polymer electrolytes (SPEs) have been prepared by solution casting. The highest ionic conductivity achieved is 3.4610?3 S cm?1. Electrochemical potential window of the SPEs is found around 4.7 V. Interaction between PVDF and LiBOB is studied systematically. The changes of C–C, CF2, and CH2 vibration modes with an emerging shoulder are analyzed. At higher salt content, this shoulder becomes more prominent peak at the expense of CF2 vibration mode. This suggests the possible Li+?F coordination. Deconvolution of IR spectra region from 1750 to 1850 cm?1 has been carried out to estimate the relative percentage of free ions and contact ions. The finding is in good agreement with conductivity and XRD results. When more salt is present, the number of free ions percentage increases and the Full width at half-maximum (FWHM) of (110) plane is broadening. The Li+?F interaction breaks the folding patterns of polymer chain and enhances amorphousness domain.  相似文献   

9.
10.
Polymer–ionic liquid composite electrolytes based on poly (vinylidenefluoride-co-hexafluoropropylene) (PVdF–HFP) and room temperature ionic liquid: 2,3-dimethyl-1-octylimidazolium hexafluorophosphate (DMOImPF6) have been synthesized and studied. The addition of dimethylacetamide (DMA) and propylene carbonate (PC), both with high dielectric constant and low viscosity, to polymer electrolytes has been found to result in an enhancement of conductivity by one order of magnitude. Composite polymer electrolytes containing ionic liquid have been found to be thermally stable upto 300°C. Motional narrowing observed in the variation of line width of 1H and 19F NMR peaks with temperature suggests that both cations and anions are mobile in these electrolytes.  相似文献   

11.
The blend-based polymer electrolyte consisting of poly (vinyl chloride) (PVC) and poly (ethylene glycol) (PEG) as host polymers and lithium perchlorate (LiClO4) as the complexing salt was studied. An attempt was made to investigate the effect of TiO2 concentration in the unplasticized PVC–PEG polymer electrolyte system. The XRD and FTIR studies confirm the formation of a polymer–salt complex. The conductivity results indicate that the incorporation of ceramic filler up to a certain concentration (15 wt.%) increases the ionic conductivity and upon further addition the conductivity decreases. The maximum ionic conductivity 0.012 × 10−4 S cm−1 is obtained for PVC–PEG–LiClO4–TiO2 (75–25–5–15) system. Thermal stability of the polymer electrolyte is ascertained from TG/DTA studies.  相似文献   

12.
A series of different composition of polymer electrolytes-based on poly(vinyl chloride) (PVC) as host polymer, lithium tetraborate (Li2B4O7) as dopant salt, and dibutyl phthalate (DBP) as plasticizer were prepared by solution casting method. The interaction between the PVC, Li2B4O7, and DBP were studied by Fourier transform infrared. The shifting, broadening, and splitting of transmission peaks were the evidences of complexation. The highest ionic conductivity polymer electrolyte of 2.83 × 10−6 S/cm was achieved at ambient temperature upon addition of 30 wt.% of DBP. In addition, the temperature-dependent conductivity, frequency-dependent conductivity, dielectric permittivity, and modulus studies were performed. The temperature-dependent conductivity of the polymer electrolytes was found to obey the Arrhenius behavior. The thermal stability of polymer electrolytes was verified by thermogravimetric analysis. The lower in glass transition temperature was proven in differential scanning calorimetry, whereas the higher amorphous region within the polymer matrix was demonstrated in X-ray diffraction.  相似文献   

13.
In the past half century, we have witnessed an explosive growth of effort in that cross-discipline which is characterized by the deposition of localized high–energy densities in condensed matter by means of energetic ions—the field of ion–solid interactions. In this overview, the fundamental physical processes of ion–solid interaction are outlined. A brief discussion is given of the basic energy transfer mechanisms and the consequences of ion impact into solids such as scattering, sputtering and radiation damage. It is now understood that radiation damage is itself far from being restricted to deleterious and detrimental consequences. Our knowledge of the growing variety of changes in the physical, chemical and biological properties of target materials are growing exponentially. Many valuable beneficial technological applications, some of which we discuss, have their origin in physical processes taking place at the nanometric level.  相似文献   

14.
15.
Kingslin Mary Genova  F.  Selvasekarapandian  S.  Vijaya  N.  Sivadevi  S.  Premalatha  M.  Karthikeyan  S. 《Ionics》2017,23(10):2727-2734
Ionics - Blend polymer electrolytes with optimized composition (92.5 PVA:7.5 PAN) doped with lithium triflate (LiCF3SO3) have been prepared in different concentrations by solution casting...  相似文献   

16.
Solid polymer electrolytes based on high molecular weight poly(ethylene oxide) (PEO) complexed with lithium difluoro(oxalato)borate (LiDFOB) salt in various EO:Li molar ratios from 30:1 to 8:1 were prepared by using solution casting technique. Ion–polymer interaction, structural, thermal, and ionic conductivity studies have been reported by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), polarized optical microscopy (POM), differential scanning calorimeter (DSC), and impedance analysis. FTIR spectral studies suggested that the interaction of Li+ cations with the ether oxygen of PEO, where a triple peak broad band centered at 1105 cm?1, corresponds to C–O–C stretching and extreme deformation occurs. XRD, POM, and DSC indicated that the inclusion of LiDFOB salt could reduce the crystallinity of PEO. The melting temperature of PEO shifted to lower temperature side by the addition of LiDFOB. The glass transition temperature obtained for the system 10:1 was ?38.2 °C. An increase in the ionic conductivity from 3.95?×?10?9 to 3.18?×?10?5 S/cm at room temperature (23 °C) was obtained through the addition of LiDFOB to a high molecular weight PEO. In addition, the ionic conductivity of the polymer electrolyte films followed an Arrhenius relation, and the activation energy decreased with increasing LiDFOB concentration.  相似文献   

17.
Improvement of electrical conductivity of poly ethylene oxide (PEO)–LiI polymer electrolytes is necessary for their use in solid state lithium ion battery. In this study a new kind of PEO–LiI-based polymer electrolytes embedded with CdO nanoparticles with improved electrical conductivity has been prepared and characterized. The electron microscopic studies confirm that CdO nanoparticles of average size 2.5 nm are dispersed in the PEO matrix. The glass transition temperature of the PEO–LiI electrolyte decreases with the introduction of CdO nanoparticle in the polymer matrix. X-ray diffraction, electron microscopic, and differential scanning calorimetry studies show that the amorphous phase of PEO increases with the introduction of CdO nanoparticle and that the increase in amorphous phase is maximum for 0.10 wt% CdO doping. The electrical conductivity of the sample with 0.10 wt% CdO increases by three orders in magnitude than that of the PEO–LiI electrolyte. The electrical conductivity of PEO–LiI electrolyte embedded with CdO nanoparticle exhibits VTF behavior with reciprocal temperature indicating a strong coupling between the ionic and the polymer chain segmental motions.  相似文献   

18.
In this study the thermodynamic and structural properties of a CuAlNi model alloy (3A) system were investigated using a molecular dynamics (MD) simulation method. The interactions between atoms were modelled by the Sutton-Chen embedded atom method (SCEAM) based on many-body interactions. It was observed that at the end of thermal process the thermo-elastic phase transformation occurred in the model alloy system. In order to analyse the structures obtained from MD simulation, techniques such as thermodynamic parameters and radial distribution function (RDF) were used. The local atomic order in the model alloy was analysed using Honeycutt–Andersen (HA) method.  相似文献   

19.
Two systems (salted and plasticized) of starch–chitosan blend-based electrolytes incorporated with ammonium chloride (NH4Cl) are prepared via solution cast technique. The incorporation of 25 wt% NH4Cl has maximized the room temperature conductivity of the electrolyte to (6.47?±?1.30)?×?10?7 S cm?1. Conductivity is enhanced to (5.11?±?1.60)?×?10?4 S cm?1 on addition of 35 wt% glycerol. The temperature dependence of conductivity for all electrolytes is Arrhenian, and the value of activation energy (E a ) decreases with increasing conductivity. Conductivity is found to be influenced by the number density (n) and mobility (μ) of ions. The complexation between the electrolytes components is proven by Fourier transform infrared analysis. The relaxation time (t r ) for selected electrolytes is found to decrease with increasing conductivity and temperature. Conduction mechanism for the highest conducting electrolyte in salted and plasticized systems is determined by employing Jonscher’s universal power law.  相似文献   

20.
We reconsider the problem of quantum system interacting with a complex environment discussed by Caldeira and Leggett (CL), and generalize their results for a quantum oscillator coupled to a reservoir R with dense discrete spectrum of oscillators with close to ωs frequencies. Dynamics consists of recurrence cycles with partial revivals of the initial state. This revival or Loschmidt echo appears in each cycle. Width and number of the Loschmidt echo components increase with the recurrence cycle number leading to irregular, stochastic-like time evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号