首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A method has been developed for fabricating nanoporous matrices based on anodic aluminum oxide for the deposition of ferromagnetic nanoparticles in them. The modes of deposition of strontium ferromolybdate thin films prepared by the ion-plasma method have been worked out, and the magnetic and magnetoresistive properties, structure, and composition of the films have been investigated. It has been revealed that the microstructure and properties of the strontium ferromolybdate films deposited by ionplasma sputtering depend on the deposition rate and the temperature of the substrate. Based on the measurement of the electrical resistivity of nanoheterostructures in a magnetic field, it has been found that the magnetoresistance reaches 14% at T = 15 K and B = 8 T, which is due to the manifestation of tunneling magnetoresistance.  相似文献   

2.
3.
High field electrical switching on blown films of MoO3(60%)–P2O5(40%), MoO3(50%)–WO3(10%)–P2O5(40%), and MoO3(45%)–WO3(15%)–P2O5(40%) having different thicknesses was studied and compared. Switching was observed using two terminal samples. S-type current–voltage characteristic (current-controlled negative resistance—CCNR) with memory was observed in molybdenum–phosphate glasses, but N-type characteristic (voltage-controlled negative resistance—VCNR) with threshold in tungsten–molybdenum–phosphate glasses was observed. The important observation was that with the addition of WO3 to binary MoO3–P2O5 led to a change of IV characteristic from CCNR with memory to VCNR with threshold. The measurements of density and molar volume showed linear relation between MoO3 content and density which decreased with the increase of MoO3 content. The samples’ thickness had no significant effect on threshold voltage. The attained results also indicated that the electrode material had no effect on switching property of devices. The switching behavior of the devices did not show any dependence on the polarity of the applied voltage. In terms of the effect of heat on the switching behavior of molybdenum–phosphate glasses, it was found that threshold voltage decreases with increasing of temperature. Finally, the switching phenomenon was explained by thermal (formation of crystalline filaments) and electronic models.  相似文献   

4.
A series of glasses [(TeO2) x (B2O3)1−x ]1−y [Ag2O] y with x = 70 and y = 10, 15, 20, 25 and 30 mol% were synthesised by rapid quenching. Longitudinal and shear ultrasonic velocity were measured at room temperature and at 5 MHz frequency. Elastic properties, Poisson's ratio, microhardness, softening temperature and Debye temperature have been calculated from the measured density and ultrasonic velocity at room temperature. The experimental results indicate that the elastic constants depend upon the composition of the glasses and the role of the Ag2O inside the glass network is discussed. Estimated parameters based on Makishima–Mackenzie theory and bond compression model were calculated in order to analyse the experimental elastic moduli. Comparison between the experimental elastic moduli data obtained in the study and the calculated theoretically by the mentioned above models has been discussed.  相似文献   

5.
Composite solid electrolytes in the system (1???x)Li2CO3xAl2O3, with x?=?0.0–0.5 (mole), were synthesized by a sol–gel method. The synthesis carried out at low temperature resulted in voluminous and fluffy products. The obtained materials were characterized by X-ray diffraction, differential scanning calorimetry, scanning electron microscopy/energy-dispersive X-ray, Fourier transform infrared spectroscopy and AC impedance spectroscopy. Structural analysis of the samples showed an amorphous feature of Li2CO3 and traces of α-LiAlO2, γ-LiAlO2 and LiAl5O8. The prepared composite samples possess high ionic conductivities at 130–180 °C on account of the presence of lithium aluminates as well as the formation of a high concentration of an amorphous phase of Li2CO3 via this sol–gel preparative technique.  相似文献   

6.
Features of the formation of lead-ferroniobate compounds in the xBaCO3–(1 – x)PbO–Fe2O3–Nb2O5 system by solid-phase synthesis are investigated. For perovskite-type lead-ferroniobate solid solution, a single-phase concentration region is revealed at 1233 K. The crystalline structures of the synthesized compounds are refined using Rietveld analysis and the Pm3?m and R3m space groups. Ceramic samples of lead ferroniobate are studied by scanning electron microscopy.  相似文献   

7.
Using time-resolved photoelectron spectroscopy, the decay channels of AuO2 and Au2O2 following photoexcitation with 3.1-eV photons have been studied. For AuO2, a state with a rather long lifetime of 30 ps has been identified. Its decay path could not be determined but photodesorption can be excluded. For Au2O2, the spectra indicate O2 desorption after 3.1-eV photoexcitation on a time scale of 1 ps. While comparing these results on Au n O2 with analogous data on Ag n O2 clusters, a discernible pattern emerges: for dissociatively bound O2(AuO2, Ag3O2), there are long-living excited states which do not decay by oxygen desorption, while for molecular chemisorption (Au2O2, Ag2O2, Ag4O2, Ag8O2), the 3.1-eV photoexcitation triggers fast O2 desorption with a high quantum yield.  相似文献   

8.
Differential scanning calorimetry has been used to study the influence of temperature on the heat capacity of synthesized vanadates Zn2V2O7, (Cu0.56Zn1.44)V2O7, and (Cu1.0Zn1.0)V2O7. It is found that dependences Cp = f(T) have extremes. The thermodynamic properties of Zn2V2O7 have been determined.  相似文献   

9.
The structural characteristics, valence states, and distribution of cerium ions between the components in In2O3–CeO2 and SnO2–CeO2 nanocomposites fabricated using the impregnation method were studied. X-ray photoelectron spectroscopy (XPS) and energy-dispersive X-ray spectroscopy (EDX) were used to show that, during impregnation, cerium ions are not included into In2O3 crystals and are disposed only on their surface in the form of nano-sized crystallites or amorphous clusters. On the other side, under the contact of CeO2 clusters with a surface of SnO2 matrix crystals, cerium ions penetrate into the surface layer of these crystals. In contrast to an In2O3–CeO2 system, where the addition of CeO2 does not affect the conduction activation energy, where cerium oxide is added to SnO2, the observed increase in the resistance of a SnO2–CeO2 composite is accompanied by a sufficient increase in activation energy. These data and the XPS spectra confirm the modification of the surface layers of conductive SnO2 crystals as, a result of the penetration of cerium ions into these layers.  相似文献   

10.
Organic–inorganic hybrid sample [N(C4H9)4]2Cu2Cl6 was prepared via the reaction between copper chloride and tetrabutylammonium chloride. The compound was characterized by X-ray powder diffraction, IR, Raman, differential scanning calorimetry (DSC), DTA-TGA analysis and electrical impedance spectroscopy. DSC studies indicate a presence of one-phase transition at 343 K. The complex impedance of compound [N(C4H9)4]2Cu2Cl6 have been investigated in temperature and frequency ranges 300–380 K and 200 Hz–5 MHz, respectively. The Z′ and Z″ versus frequency plots are well fitted to an equivalent circuit model. The circuits consist of the parallel combination of bulk resistance R p and constant phase elements CPE. The frequency dependence of the conductivity is interpreted in term of Jonscher's law: s(w) = sdc + Awn \sigma (\omega ){ } = {\sigma_{\rm{dc}}} + { }A{\omega^n} . The conductivity follows the Arrhenius relation. The variation of the value of these elements with temperatures confirmed the availability of the phase transition at 343 K detected by DSC and electrical measurements.  相似文献   

11.
Composite materials used for electrode and electrolyte materials have been intensely studied in view of their advantages such as higher conductivity and better operational performance compared to their single-phase counterparts. The present work aims at studying the electrical and structural characteristics of a new composite electrolyte namely, (PbI2) x  − (Ag2O–Cr2O3)100−x where x = 5, 10, 15, 20, and 25 mol%, respectively, prepared by the melt quenching technique. The room temperature X-ray diffraction spectra revealed certain crystalline phases in the samples. AC conductivity analysis for all the prepared samples was carried out over the frequency range 1 MHz–20 Hz and in the temperature window 297–468 K. The room temperature conductivity values were calculated to be in the order of 10−5–10−3 Scm−1. An Arrhenius dependence of temperature with conductivity was observed, and the activation energies calculated were found to be in the range 0.27–0.31 eV. Furthermore, the total ionic transport number (t i) values obtained for all these indicated the ionic nature of this system. Paper presented at the Third International Conference on Ionic Devices (ICID 2006), Chennai, Tamilnadu, India, Dec. 7–9, 2006.  相似文献   

12.
A new Li2O–Nb2O5–TiO2 (LNT) ceramic with the Li2O:Nb2O5:TiO2 mole ratio of 5.5:1:7 was prepared by solid state reaction route. The phase and structure of the ceramic were characterized by X-ray diffraction and scanning electron microscopy (SEM). The microwave dielectric properties of the ceramics were studied using a network analyzer. The microwave dielectric ceramic has low sintering temperature (∼1075°C) and good microwave dielectric properties of ε r=42, Q×f=16900 GHz (5.75 GHz), and τ f =63.7 ppm/°C. The addition of B2O3 can effectively lower the sintering temperature from 1075 to 875°C and does not induce degradation of the microwave dielectric properties. Obviously, the LNT ceramics can be applied to microwave low temperature-cofired ceramics (LTCC) devices.  相似文献   

13.
Silver-based quaternary glasses were prepared by splat quenching technique. X-ray diffraction and differential scanning calorimetry were done for confirming their amorphous nature. The conductivity of the glasses was measured in the frequency range from 1 Hz to 32 MHz from room temperature to 373 K. Conductivity data, which obeys the Arrhenius type behavior, shows minimum at 30 mol% Ag2O, suggesting that the conductivity mechanisms are different above and below these two regions. The minimum in conductivity is accompanied by an inverse behavior of activation energy. Experimental data suggests that a polaron hopping mechanism operates in the electronically conducting domain of 20 ≤ × ≤ 30, and an interstitial pair mechanism operates in the ionically conducting domain of 35 ≤ × ≤ 55.  相似文献   

14.
Composite structures consisting of (001)-oriented SrTiO3 (STO)/La0.7Sr0.3MnO3 (LSMO) films of 30 nm thickness, grown on an (001) Pb(Mg1/3Nb2/3)TiO3– 28 mol.% PbTiO3 piezoelectric relaxor-ferroelectric single-crystalline wafer were investigated by means of Wide-Angle X-ray Diffraction (WAXRD) in situ under influence of a d.c. electric field with strength E up to ±18 kV/cm. The WAXRD measurements of the films and substrate reflection profiles resulted in a determination of the strain s in the films and the substrate separately. The strained state of the STO/LSMO films is effectively controlled by a huge converse piezoelectric effect of the PMN-PT substrate. The coefficients of coupling between electric-field-induced out-of-plane strain in the films and in the substrate for the composite system STO/LSMO/PMN-PT are obtained.  相似文献   

15.
The specific heat of [NH2(CH3)2]2ZnCl4 was measured calorimetrically in the temperature region 80–300 K. As the temperature T decreases, the C p (T) dependence indicates a phase transition sequence, with the phase transition at T6=151 K observed for the first time. The thermodynamic characteristics of the crystal were refined. The transformation occurring at T2=298.3 K is shown to be an incommensurate-commensurate phase transition.  相似文献   

16.
A comparative μSR study of ceramic samples of the EuMn2O5 and Eu0.8Ce0.2Mn2O5 multiferroics is performed in the temperature range from 15 to 300 K. It is found that the Ce doping of the EuMn2O5 sample slightly reduces the temperature of the magnetic phase transition from T N = 45 K for the EuMn2O5 sample to T N = 42.5 K for the Eu0.8Ce0.2Mn2O5 sample. Below the temperature T N for both samples, there are two types of localization of a thermalized muon with different temperature dependences of the precession frequency of the magnetic moment of the muon in an internal magnetic field. The higher frequency in both samples refers to the initial antiferromagnetic matrix. The behavior of this frequency in Eu0.8Ce0.2Mn2O5 follows the Curie–Weiss law with the exponent β = 0.29 ± 0.02, which differs from the value β = 0.39 standard for 3D Heisenberg magnetics and is observed in EuMn2O5, because of the strong frustration of the doped sample. The temperature-independent low frequency is due to the presence of Mn3+–Mn4+ ferromagnetic pairs located along the b axis of the antiferromagnetic matrix and in the regions of phase separation, which contain such ion pairs and e g electrons recharging them. In both samples, polarization losses are the same (about 20%) and are associated with the formation of Mn4+–Mn4+ + Mu complexes near Mn3+–Mn4+ ferromagnetic pairs. In the temperature interval from 25 to 45 K, the separation of the Eu0.8Ce0.2Mn2O5 structure into two fractions where the relaxation rates of polarization of muons differ by an order of magnitude is revealed. This effect is due to a change in the state of regions of phase separation (1D superlattices) at the indicated temperatures. Such effect in EuMn2O5 is significantly weaker.  相似文献   

17.
We investigate in detail the dc magnetization and nonlinear ac susceptibility behavior of the superconducting ferromagnet RuSr2Eu1.5Ce0.5Cu2O10- δ (Ru1222) to develop a comprehensive understanding of the spin glass and superparamagnetism in this material. The structural properties of the system result in the formation of magnetic (ferromagnetic) clusters of different sizes, shapes and properties. The magnetic clustering of the system leads to observation of various features in dc magnetization and ac susceptibility consistent with superparamagnetism and cluster spin glass states, which can coexist or stand alone, depending on the temperature range considered. Experimental results of magnetic measurements in combination with their analysis have enabled us to explain and distinguish these phenomena, as well as to propose a temperature dependent scenario of the system behavior.  相似文献   

18.
We report KF-doping work on the recently found ferroelectric material BaTi2O5. The ceramic samples, Ba1-xKxTi2O5-xFx, were synthesized by solid-state reaction of mixed KF and sol–gel-derived BaTi2O5 powders at 1150 °C. An almost pure phase was obtained for nominal composition x≤0.097, while electron probe microanalysis indicated that the real incorporated K and F contents were less than half of the nominal values. It was observed that KF-doping is beneficial in enhancing the ceramic density to some extent, which is a key issue in sol–gel-derived BaTi2O5 ceramics, due to a possible liquid-phase sintering mechanism through the presence of melted KF at the sintering temperature. Scanning electron microscopy images showed that these porous ceramic samples are composed of sub-micron-sized powder aggregates which, with increasing KF-doping, undergo further agglomeration. Dielectric measurement from room temperature to ∼ 560 °C showed a broad ferroelectric phase transition, with TC ∼ 430 °C for the undoped sample. As KF-doping increases, TC decreases, and the magnitude of the dielectric constant maximum also displays a decreasing trend. The strongly reduced dielectric response can be partly understood by regarding the porous ceramic sample as a composite material composed of bulk BaTi2O5 and air, where the porosity has a significant influence on the effective dielectric constant. PACS 77.84.-s; 77.84.Dy; 81.20.Fw  相似文献   

19.
S. Ramesh  G. P. Ang 《Ionics》2010,16(5):465-473
Plasticized polymer electrolytes composed of poly(methyl methacrylate) (PMMA) as the host polymer and lithium bis(trifluoromethanesulfonyl)imide LiN(CF3SO2)2 as a salt were prepared by solution casting technique at different ratios. The ionic conductivity varied slightly and exhibited a maximum value of 3.65 × 10−5 S cm−1 at 85% PMMA and 15% LiN(CF3SO2)2. The complexation effect of salt was investigated using FTIR. It showed some simple overlapping and shift in peaks between PMMA and LiN(CF3SO2)2 salt in the polymer electrolyte. Ethylene carbonate (EC) and propylene carbonate (PC) were added to the PMMA–LiN(CF3SO2)2 polymer electrolyte as plasticizer to enhance the conductivity. The highest conductivities obtained were 1.28 × 10−4 S cm−1 and 2.00 × 10−4 S cm−1 for EC and PC mixture system, respectively. In addition, to improve the handling of films, 1% to 5% fumed silica was added to the PMMA–LiN(CF3SO2)2–EC–PC solid polymer electrolyte which showed a maximum value at 6.11 × 10−5 S cm−1 for 2% SiO2.  相似文献   

20.
The inverse magnetoelectric effect and internal friction in two-layer composites based on ferromagnetic Tb0.12Dy0.2Fe0.68 and piezoelectric PbZr0.53Ti0.47O3 are studied in an ac electrical field in the frequency range of 52–213 kHz at temperatures of 293 to 400 K. A correlation is found between the internal friction and the efficiency of the inverse magnetoelectric transformation at resonant frequencies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号