首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two sets of samples of SnO2/In2O3/TiO2 system have been fabricated with different concentrations of component materials. In the first set TiO2 with rutile structure was used, while in the second set it has the structure of anatase. Thin films (up to 50 nm) of obtained mixtures were deposited. Their sensitivity and selectivity with respect to methane (CH4) were studied. Nanostructure on the basis of 70%SnO2 — 10%In2O3 — 20%TiO2(anatase) exhibits sufficient sensitivity to methane.  相似文献   

2.
SiO2-TiO2 films [Si:Ti = 1:(0.06–2.3)] are obtained by the sol-gel method. The structural and photoluminescent properties of the films and powders heat-treated at different temperatures are studied. It is shown that after 700°C the composite consists of TiO2 crystallites that are structurally similar to anatase and distributed in an amorphous SiO2 matrix. The photoluminescence spectra have maxima at 450–500 nm. The photoluminescence intensity depends on the treatment temperature and TiO2 content. __________ Translated from Zhurnal Prikladnoi Spektroskopii Vol. 74, No. 3, pp. 357–361, May–June, 2007.  相似文献   

3.
The effect of uniaxial mechanical pressure σ m ≤ 150 bar on the spectral (300–800 nm) dependence of the birefringerence Δn i and refractive indices n i of (NH4)2SO4 crystals has been investigated. It is shown that the dispersion of n i (λ) and Δn i (λ) is normal and sharply increases with approach to the absorption edge. It is established that uniaxial pressure does not change the character of the dispersions dn i / and dΔn i / and only affects their magnitudes. It is shown that the increase in the refractive indices under uniaxial stress is mainly due to the increase in the refraction caused by the increase in the band gap and long-wavelength shift of the UV absorption band maximum.  相似文献   

4.
Carbon nanotubes decorated with SnO2 nanoparticles were prepared by conventional and microwave-assisted wet impregnation. The composites were thoroughly characterized by X-ray diffraction, Raman spectroscopy, BET-surface area measurement, Scanning and transmission electron microscopy. The XRD studies revealed the formation of tetragonal phase of SnO2. The microwave method produced CNTs heavily decorated with SnO2 nanoparticles with average size 5 nm in a total reaction time of 10 min because of the rapid volumetric heating. DC conductivity increased significantly for the nanocomposite samples when compared with the pure CNTs. In electrical conductivity properties, sample prepared by microwave method was found to be superior to the one prepared by conventional procedure due to homogeneous distribution of nanoparticles.  相似文献   

5.
L.P. Teo 《Ionics》2017,23(2):309-317
In this work, Li2SnO3 has been synthesized by the sol–gel method using acetates of lithium and tin. Thermogravimetric analysis (TGA) has been applied to the precursor of Li2SnO3 to determine the suitable calcination temperature. The formation of the compound calcined at 800 °C for 9 h has been confirmed by X-ray diffraction (XRD) analysis. The Li2SnO3 is then pelletized and electrically characterized by using electrochemical impedance spectroscopy (EIS) in the frequency range from 50 Hz to 1 MHz. The complex impedance spectra clearly show the dominating presence of the grain boundary effect on electrical properties whereas the complex modulus plots reveal two semicircles which are due to the grain (bulk) and grain boundary. The spectra of imaginary parts of both impedance and modulus versus frequency show the existence of peaks with the modulus plots exhibiting two peaks that are ascribed to the grain and grain boundary of the material. The peak maximum shifts to higher frequency with an increase in temperature and the broad nature of the peaks indicates the non-Debye nature of Li2SnO3. The activation energy associated with the dielectric relaxation obtained from the electrical impedance spectra is 0.67 eV. From the electric modulus spectra, the activation energies related to conductivity relaxation in the grain and grain boundary of Li2SnO3 are 0.59 and 0.69 eV, respectively. The conductivity–temperature relationship is thermally assisted and obeys the Arrhenius rule with the activation energy of 0.66 eV. The conduction mechanism of Li2SnO3 is via hopping.  相似文献   

6.
The conductivity and heat capacity of tripotassium hydrogen trisulfate single crystals were studied. It was shown that these single crystals undergo a solid-solid phase transformation upon heating with the formation of new phases, and that their properties change considerably. Anomalies related to the sorption and desorption of water vapor were observed in the formed multiphase system. Such anomalies were observed for the first time in measurements of the true heat capacity.  相似文献   

7.
Tin dioxide nanoribbons were fabricated for clarifying the origin of the red photoluminescence band. It is found that the red band abruptly decreases its intensity after annealing the nanoribbons in O2. The time-resolved photoluminescence decay curve shows that the red band has a luminescence lifetime of ns. The electron spin resonance spectrum discloses that the red band is related to a kind of combined oxygen-vacancy (V o+ and V o++) centers. Spectral analysis and theoretical calculation confirm that the red band arises from a transition between the combined oxygen-vacancy defect states in the band gap.  相似文献   

8.
A sonochemical method is developed to fabricate SnO2 nanotubular materials from biological substances (here, it is cotton). The cotton fibers in SnCl2 solution were first treated with ultrasonic waves in air, followed by calcinations to give nanotubular materials that faithfully retain the initial cotton morphology. The microstructure and morphology of the obtained SnO2 nanotubules were characterized by the combination of field-emission scanning electron microscope (FE-SEM), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR), X-ray diffraction (XRD), and N2 adsorption/desorption measurements. The thermal behavior and crystalline properties were examined in the temperature range of 450–700 °C. The nanocrystals composing of SnO2 nanotubules were estimated about 8.5, 13.2, and 14.2 nm corresponding to calcination temperatures of 450, 550, and 700 °C, respectively. The sensor performance of biomorphic SnO2 nanotubules calcined at 700 °C was investigated in the atmosphere of ethanol, formaldehyde, carbinol, carbon monoxide, hydrogen, ammonia, and acetone, respectively, which exhibited a good selectivity for acetone at a working temperature of 350 °C. The sensitivity to 20 ppm acetone, S, was 6.4 at 350 °C with rapid response and recovery (around 10–9 s). These behaviors were well explained in relation to the morphology of the nanotubules thus produced.  相似文献   

9.
We produce SO2 molecules with a centre of mass velocity near zero using a Stark decelerator. Since the initial kinetic energy of the supersonic SO2 molecular beam is high, and the removed kinetic energy per stage is small, 326 deceleration stages are necessary to bring SO2 to a complete standstill, significantly more than in other experiments. We show that in such a decelerator possible loss due to coupling between the motional degrees of freedom must be considered. Experimental results are compared with 3D Monte-Carlo simulations and the quantum state selectivity of the Stark decelerator is demonstrated.  相似文献   

10.
Solid polymer electrolytes (SPE) based on poly-(vinyl alcohol) (PVA)0.7 and sodium iodide (NaI)0.3 complexed with sulfuric acid (SA) at different concentrations were prepared using solution casting technique. The structural properties of these electrolyte films were examined by X-ray diffraction (XRD) studies. The XRD data revealed that sulfuric acid disrupt the semi-crystalline nature of (PVA)0.7(NaI)0.3 and convert it into an amorphous phase. The proton conductivity and impedance of the electrolyte were studied with changing sulfuric acid concentration from 0 to 5.1 mol/liter (M). The highest conductivity of (PVA)0.7(NaI)0.3 matrix at room temperature was 10−5 S cm−1 and this increased to 10−3 S cm−1 with doping by 5.1 M sulfuric acid. The electrical conductivity (σ) and dielectric permittivity (ε′) of the solid polymer electrolyte in frequency range (500 Hz–1 MHz) and temperature range (300–400) K were carried out. The electrolyte with the highest electrical conductivity was used in the fabrication of a sodium battery with the configuration Na/SPE/MnO2. The fabricated cells give open circuit voltage of 3.34 V and have an internal resistance of 4.5 kΩ.  相似文献   

11.
Single crystals of the K3H(SO4)2 compound are investigated using X-ray diffraction on Xcalibur S and Bruker diffractometers. The structure of the low-temperature monoclinic phase is refined (space group C2/c, z = 4, a = 14.698(1) Å, b = 5.683(1) Å, c = 9.783(1) Å, β = 103.01(1)°, T = 293 K, Bruker diffractometer), the structural phase transition is revealed, and the structure of the high-temperature trigonal phase is determined (space group R \(\bar 3\) m, z = 3, a = 5.73(1) Å,c = 21.51(1) Å,T = 458 K, Xcalibur diffractometer).  相似文献   

12.
Composite electrolytes are well-known multiphase systems and exhibit maxima in the conductivity at certain second-phase concentration. An attempt has been made to investigate a number of sodium sulfate (Na2SO4)-based composite systems. The dispersoids that have been used are MgO, Al2O3, and SiO2. The samples have been characterized using impedance spectroscopy, X-ray diffraction, and differential scanning calorimetry. The maximum conductivity has been observed for MgO dispersed system, and the percolation threshold has been observed at 30-mol% dispersoid, MgO concentration. Interestingly, two maxima have been observed in case of the Na2SO4–SiO2 and Na2SO4–Al2O3 composite systems. In the Na2SO4–SiO2 system, the first maximum occurs at lower concentration, i.e., in the range between 10 and 20 mol%, whereas the second occurs at the 40-mol% dispersoid concentration. For the Na2SO4–Al2O3 system, although slightly indistinguishable, two peaks in the conductivity vs composition plot have been observed around 12- and 30-mol% Al2O3 concentrations.  相似文献   

13.
The effect of a uniaxial mechanical compression (σm ≤ 100 bar) on the spectral dependences (300–800 nm) of the birefringence Δn i and refractive indices n i of K2SO4 crystals is studied. The electronic polarizabilities, refractions, and parameters (λ0i , B 1i ) of ultraviolet oscillators of mechanically compressed crystals are calculated. It is shown that the dispersions of Δn i(λ) and n i(λ) are normal and sharply increase near the absorption edge. It is found that the uniaxial compression changes the value of the dispersions dΔn i/dλ and dn i/dλ rather than their character. It is ascertained that the simultaneous action of the compressions σx and σz, as well as of σy and σz, leads to the appearance of new isotropic states in the K2SO4 crystal, which manifests itself in the equality of corresponding birefringences. It is shown that the baric dependences n i(σ) are determined by the change in the density of oscillators (~30%), by the shift of the absorption edge and effective band maximum and by the change in the oscillator strength (~70%).  相似文献   

14.
Rare-earth-based infinite coordination polymer (RE-ICP) spheres with diameters ranging from 50 nm to 2 μm have been prepared using meso-2,3-dimercaptosuccinic acid (DMSA) as ligand under hydrothermal conditions. RE2O2SO4 microspheres with similar morphology were obtained by calcining the corresponding RE-ICP spheres. However, as for Ce-ICP and Sc-ICP, CeO2 and Sc2O3 were obtained. The products were characterized using X-ray diffraction, scanning electron microscopy, thermogravimetric analysis, infrared spectroscopy, laser Raman spectrometry, and energy-dispersive X-ray spectrum. Elemental analysis and inductive coupled plasma atomic emission spectrometer were adopted to study the composition of the Eu-ICP. To explore their potential applications, several samples of the products were selected and their properties were investigated. The Eu-ICP and Eu2O2SO4 microspheres give strong red emissions when excited with a 394-nm ultraviolet light. Furthermore, the Eu-ICP displays a high selectivity for Fe(III). The obtained CeO2 has a strong absorption in the UV region and the Gd2O2SO4 microspheres show paramagnetic behavior.
Graphical abstract A series of RE2O2SO4 microspheres were prepared using a coordination polymer precursor method.
  相似文献   

15.
The infrared reflectance spectra of a mechanically free or uniaxial-pressure-confined (NH4)2SO4 crystal were studied for the first time in the spectral range 800–1700 cm?1 in three crystallographic directions. Using the Kramers-Kronig relations, the dispersion and pressure dependences of the following quantities are obtained: the index of refraction n, the real (?1) and imaginary (?2) parts of the permittivity, the frequencies of longitudinal (ωLO) and transverse (ωTO) optical vibrations, the damping constant γ, and the oscillator strength f of the mechanically free or clamped (NH4)2SO4 crystal. A considerable change in the main reflection bands with pressure was observed, which is due to the effect of uniaxial pressure on the NH4 and SO4 tetrahedral frames.  相似文献   

16.
Nanocrystalline SnO2 was synthesized in supercritical water at 385–415°C and 30 MPa (38–106 s residence time) in a tubular flow reactor from an aqueous solution of 0.1–0.4 M SnCl4. The conversion rate was between 53 and 81%, but increased to 97.8% when 0.1 M NaOH was added. Nanoparticles were analyzed by a series of independent analytical techniques, including TEM, Raman, XRD, SEM, EDX and FT-IR. The initial size of the particles was about 3.7 nm. After calcination at 450°C for 2 h, the particle size increased to 4 nm. The particles were of low crystallinity, as indicated by the weak Raman and XRD signals. All particles were composed of Sn and O, as verified by the EDX spectra. The crystals were tetragonal, as confirmed by the weak XRD spectrum. After calcination at 600°C for 10 h, the particle size increased to 9 nm, while high crystallinity was confirmed by Raman and XRD analyses. All the crystals had the same structure, as indicated by TEM electron diffraction patterns. Using this one-step supercritical water process, nanoparticles of SnO2 can be conveniently produced continuously in a flow reactor in less than 2 min.  相似文献   

17.
The Gross-Pitaevski equation modified through the inclusion of a term accounting for the nonlocality of interatomic interaction was used to demonstrate the occurrence of extremely narrow two-and three-dimensional solitonic states in atomic Bose-Einstein condensates. The estimates of the sizes of these states gave a value of ~ 20–60 nm (atomic “needles” and “bullets”) for lithium atoms. The soliton lifetimes caused by two-and three-particle collisions were estimated. The limiting possibilities of the formation of nanostructures using needles and bullets were compared with the possibilities of other nanolithographic methods.  相似文献   

18.
Diluted magnetic semiconductor (DMS) nanoparticles of Sn1−x Er x O2 (x = 0.0, 0.02, 0.04, and 0.1) were prepared by sol–gel method. The X-ray diffraction patterns showed SnO2 rutile structure for all samples with no impurity peaks. The decrease in crystallite size with Er concentration was confirmed from TEM measurements (from 12 to 4 nm). The UV–Visible absorption spectra of Er-doped SnO2 nanoparticles showed blue shift in band gap compared to undoped SnO2. The electron spin resonance analysis of Er-doped SnO2 nanoparticles indicate Er3+ in a rutile lattice and also decrease in intensity with Er concentration above x = 0.02. Temperature-dependent magnetization studies and the inverse susceptibility curves indicated increased antiferromagnetic interaction with Er concentration.  相似文献   

19.
The electronic structures and magnetic properties for Rh-doped SnO2 crystals have been investigated by density functional theory. The results demonstrate a magnetic moment, which mainly arises from d orbital of Rhodium, of 1.0 μ B per Rhodium with a little contribution from the Oxygen atoms surrounding it. The Rh-doped SnO2 system exhibits half-metallic ferromagnetism with high Curie temperature. Several doped configurations calculations show that there are some robust ferromagnetic couplings between these local magnetic moments. The pd hybridization mechanism is responsible for the predicted ferromagnetism. These results suggest a recipe obtaining promising dilute magnetic semiconductor by doping nonmagnetic elements in SnO2 matrix.  相似文献   

20.
Polyaniline-modified tin oxide and tin oxide nanoparticles were synthesized using a solution route technique. The obtained pristine products were characterized with X-ray diffraction, thermogravimetric analysis, scanning electron microscopy, and optical absorption spectroscopy. Thermogravimetric analysis results showed that the polyaniline-modified SnO2 nanoparticles exhibit higher thermal stability than the SnO2 nanoparticles. Scanning electron microscopy analysis on the as-synthesized powders showed spherical particle in the range of 50–100 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号