首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
A series of new complexes, Mo(2)O(2)S(2)[S(2)P(OR)(2)](2) (where R = Et, n-Pr, i-Pr) and Mo(2)O(2)S(2)[S(2)POGO](2) (where G = -CH(2)CMe(2)CH(2)-, -CMe(2)CMe(2)-) have been prepared by the dropwise addition of an ethanolic solution of the ammonium or sodium salt of the appropriate O,O-dialkyl or -alkylene dithiophosphoric acid, or the acid itself, to a hot aqueous solution of molybdenum(V) pentachloride. The complexes were also formed by heating solutions of Mo(2)O(3)[S(2)P(OR)(2)](4) or Mo(2)O(3)[S(2)POGO](4) species in glacial acetic acid. The Mo(2)O(2)S(2)[S(2)P(OR)(2)](2) and Mo(2)O(2)S(2)[S(2)POGO](2) compounds were characterized by elemental analyses, (1)H, (13)C, and (31)P NMR, and infrared and Raman spectroscopy, as were the 1:2 adducts formed on reaction with pyridine. The crystal structures of Mo(2)O(2)S(2)[S(2)P(OEt(2))](2), Mo(2)O(2)S(2)[S(2)P(OEt)(2)](2).2NC(5)H(5), and Mo(2)O(3)[S(2)P(OPh)(2)](4) were determined. Mo(2)O(2)S(2)[S(2)P(OEt)(2)](2) (1) crystallizes in space group C2/c, No. 15, with cell parameters a = 15.644(3) ?, b = 8.339(2) ?, c = 18.269(4) ?, beta = 103.70(2) degrees, V = 2315.4(8) ?(3), Z = 4, R = 0.0439, and R(w) = 0.0353. Mo(2)O(2)S(2)[S(2)P(OEt)(2)](2).2NC(5)H(5) (6) crystallizes in space group P&onemacr;, No. 2, with the cell parameters a = 12.663(4) ?,b = 14.291(5) ?, c = 9.349(3) ?, alpha = 100.04(3) degrees, beta = 100.67(3) degrees, gamma = 73.03(3) degrees V = 1557(1) ?(3), Z = 2, R = 0.0593, and R(w) = 0.0535. Mo(2)O(3)[S(2)P(OPh)(2)](4) (8) crystallizes in space group P2(1)/n, No. 14, with cell parameters a = 15.206(2)?, b = 10.655(3)?, c = 19.406(3)?, beta = 111.67(1) degrees, V = 2921(1)?(3), Z = 2, R = 0.0518, R(w) = 0.0425. The immediate environment about the molybdenum atoms in 1 is essentially square pyramidal if the Mo-Mo interaction is ignored. The vacant positions in the square pyramids are occupied by two pyridine molecules in 6, resulting in an octahedral environment with very long Mo-N bonds. The terminal oxygen atoms in both 1 and 6 are in the syn conformation. In 8, which also has a distorted octahedral environment about molybdenum, two of the dithiophosphate groups are bidentate as in 1 and 6, but the two others have one normal Mo-S bond and one unusually long Mo-S bond.  相似文献   

2.
Anandhi U  Sharp PR 《Inorganic chemistry》2004,43(21):6780-6785
The pK(a) values in DMSO of the monoprotic complexes [(L(2)Pt)(2)(mu-OH)(mu-NMePh)](2+) (4) (L(2) = Ph(2)PCH(2)CH(2)PPh(2) (dppe), Ph(2)PCMe(2)PPh(2) (dppip)) are 11.9 +/- 0.1 (L(2) = dppe) and 13.5 +/- 0.2 (L(2) = dppip) as determined by (31)P NMR equilibrium titration with bases of known pK(a). Complexes 4 were prepared by treatment of [L(2)Pt(mu-OH)](2)(2+) (1) with N-methylaniline. The oxo complexes [(L(2)Pt)(2)(mu-O)(mu-NMePh)](+), formed in the equilibrium titration reactions, were independently synthesized in THF by deprotonation of [(L(2)Pt)(2)(mu-OH)(mu-NMePh)](2+) with NaN(SiMe(3))(2) and characterized as NaBF(4) adducts. Similar experiments with diprotic [L(2)Pt(mu-OH)](2)(2+) (L(2) = dppe, Ph(2)PCH(2)CH(2)CH(2)PPh(2) (dppp)) were complicated by exchange processes and were less conclusive, giving pK(a1) < 18 and pK(a2) > 18 in DMSO.  相似文献   

3.
Szabó Z  Grenthe I 《Inorganic chemistry》2007,46(22):9372-9378
The stoichiometric mechanism, rate constant, and activation parameters for the exchange of the "yl"-oxygen atoms in the dioxo uranium(VI) ion with solvent water have been studied using 17O NMR spectroscopy. The experimental rate equation, (-->)v= k(2obs)[UO2(2+)]tot2/[H+]2, is consistent with a mechanism where the first step is a rapid equilibrium 2U(17)O2(2+) + 2H2O<==>(U(17)O2)2(OH)2(2+) + 2H+, followed by the rate-determining step (U(17)O2)2(OH)2(2+) + H2O<==>(UO2)2*(OH)2(2+) + H2(17)O, where the back reaction can be neglected because the (17)O enrichment in the water is much lower than in the uranyl ion. This mechanism results in the following rate equation (-->)v= d[(UO2)2(OH)2(2+)]/dt = k(2,2)[(UO2)2(OH)2(2+)] = k(2,2*)beta(2,2)[UO2(2+)]2/[H + ]2; with k(2,2) = (1.88 +/- 0.22) x 10(4) h(-1), corresponding to a half-life of 0.13 s, and the activation parameters DeltaH++ = 119 +/- 13 kJ mol-1 and DeltaS++ = 81 +/- 44 J mol(-1) K(-1). *Beta(2,)2 is the equilibrium constant for the reaction 2UO2(2+) + 2H2O<==>(UO2)2(OH)2(2+) + 2H+. The experimental data show that there is no measurable exchange of the "yl"-oxygen in UO2(2+), UO2(OH)+, and UO2(OH)4(2-)/ UO2(OH)5(3-), indicating that "yl"-exchange only takes place in polynuclear hydroxide complexes. There is no "yl"-exchange in the ternary complex (UO2)2(mu-OH)2(F)2(oxalate)2(4-), indicating that it is also necessary to have coordinated water in the first coordination sphere of the binuclear complex, for exchange to take place. The very large increase in lability of the "yl"-bonds in (UO2)2(OH)2(2+) as compared to those of the other species is presumably a result of proton transfer from coordinated water to the "yl"-oxygen, followed by a rapid exchange of the resulting OH group with the water solvent. "Yl"-exchange through photochemical mediation is well-known for the uranyl(VI) aquo ion. We noted that there was no photochemical exchange in UO2(CO3)3(4-), whereas there was a slow exchange or photo reduction in the UO2(OH)4(2-) / UO2(OH)5(3-) system that eventually led to the appearance of a black precipitate, presumably UO2.  相似文献   

4.
Lithium complexes bearing dianionic amine bis(phenolate) ligands are described. Reactions of ligand precursors H(2)O(2)NN(Me), H(2)O(2)NN(Py) or H(2)O(2)NO(Me) [H(2)O(2)NN(Me)=Me(2)NCH(2)CH(2)N-(CH(2)-2-HO-3,5-C(6)H(2)((t)Bu)(2))(2); H(2)O(2)NN(Py)=(2-C(5)H(4)N)CH(2)N-(CH(2)-2-HO-3,5-C(6)H(2)((t)Bu)(2))(2); H(2)O(2)NO(Me)=MeOCH(2)CH(2)N-(CH(2)-2-HO-3,5-C(6)H(2)((t)Bu)(2))(2)] with 2.2 molar equivalents of (n)BuLi in diethylether afford (Li(2)O(2)NN(Me))(2) (1), (Li(2)O(2)NN(Py))(2) (2) and (Li(2)O(2)NO(Me))(2) (3) as tetra-nuclear lithium complexes. The crystalline solids of partially hydrolyzed product, (LiO(HO)NN(Py)) (4), were obtained from recrystallization of 2 in diethylether solution for three months. The synthesis of (LiO(HO)NO(Me))(2) (5) was carried out at ambient temperature by carefully layering a solution of water in hexane on top of a solution of 3 in Et(2)O. Crystalline solids of were obtained after two months. Molecular structures are reported for compounds 1, 3, 4 and 5. Compounds 1-3 show excellent catalytic activities toward the ring-opening polymerization of L-lactide in the presence of benzyl alcohol.  相似文献   

5.
(R)-[1-(Dimethylamino)ethyl]benzene reacts with nBuLi in a 1:1 molar ratio in pentane to quantitatively yield a unique hetero-aggregate (2 a) containing the lithiated arene, unreacted nBuLi, and the complexed parent arene in a 1:1:1 ratio. As a model compound, [Li(4)(C(6)H(4)CH(Me)NMe(2)-2)(2)(nBu)(2)] (2 b) was prepared from the quantitative redistribution reaction of the parent lithiated arene Li(C(6)H(4)CH(Me)NMe(2)-2) with nBuLi in a 1:1 molar ratio. The mono-Et(2)O adduct [Li(4)(C(6)H(4)CH(Me)NMe(2)-2)(2)(nBu)(2)(OEt(2))] (2 c) and the bis-Et(2)O adduct [Li(4)(C(6)H(4)CH(Me)NMe(2)-2)(2)(nBu)(2)(OEt(2))(2)] (2 d) were obtained by re-crystallization of 2 b from pentane/Et(2)O and pure Et(2)O, respectively. The single-crystal X-ray structure determinations of 2 b-d show that the overall structural motifs of all three derivatives are closely related. They are all tetranuclear Li aggregates in which the four Li atoms are arranged in an almost regular tetrahedron. These structures can be described as consisting of two linked dimeric units: one Li(2)Ar(2) dimer and a hypothetical Li(2)nBu(2) dimer. The stereochemical aspects of the chiral Li(2)Ar(2) fragment are discussed. The structures as observed in the solid state are apparently retained in solution as revealed by a combination of cryoscopy and (1)H, (13)C, and (6)Li NMR spectroscopy.  相似文献   

6.
Treatment of a toluene solution of [PdMe(2)(Cy(2)PCH(2)PCy(2))](1) with pentafluoropyridine in the presence of traces of water affords the generation of the A-frame complexes [(PdMe)(2){mu-kappa(2)(P,P)Cy(2)PCH(2)PCy(2)}(2)(mu-F)][SiMeF(4)]() and [(PdMe)(2){mu-kappa(2)(P,P)Cy(2)PCH(2)PCy(2)}(2)(mu-F)][OC(5)NF(4)](2b). If the reaction is performed in an NMR tube equipped with a PFA inliner, complex 2b is produced, only. Treatment of 1 with pentafluoropyridine in the presence of an excess water yields the pyridyloxy complex [PdMe(OC(5)NF(4))(Cy(2)PCH(2)PCy(2))](3). Compound [(PdMe)(2){mu-kappa(2)(P,P)Cy(2)PCH(2)PCy(2)}(2)(mu-F)][FHF](2c) bearing a bifluoride anion instead of SiMeF(4)(-) or OC(5)NF(4)(-) can be generated by reaction of 1 with substoichiometric amounts of Et(3)N.3HF. The analogous complex [(PdMe)(2){mu-kappa(2)(P,P)Ph(2)PCH(2)PPh(2)}(2)(mu-F)][FHF] (5c) has been synthesized by addition of Ph(2)PCH(2)PPh(2) to a solution of [PdMe(2)(Me(2)NCH(2)CH(2)NMe(2))](4) in THF and subsequent treatment of the reaction mixture with Et(3)N.3HF. The structure of the A-frame complex 5c has been determined by X-ray crystallography.  相似文献   

7.
The first examples of ring-closing metathesis (RCM) reactions of a series of terminal alkene-derived cyclic phosphazenes have been carried out. The tetrakis-, hexakis-, and octakis(allyloxy)cyclophosphazenes (NPPh(2))(NP(OCH(2)CH=CH(2))(2))(2) (1), N(3)P(3)(OCH(2)CH=CH(2))(6) (2), and N(4)P(4)(OCH(2)CH=CH(2))(8) (3) and the tetrakis(allyloxy)-S-phenylthionylphosphazene (NS(O)Ph)[NP(OCH(2)CH=CH(2))(2)](2) (4) were prepared by the reactions of CH(2)=CHCH(2)ONa with the cyclophosphazenes (NPPh(2))(NPCl(2))(2), N(3)P(3)Cl(6), and N(4)P(4)Cl(8) and the S-phenylthionylphosphazene (NS(O)Ph)(NPCl(2))(2). The reactions of 1-4 with Grubbs first-generation olefin metathesis catalyst Cl(2)Ru=CHPh(PCy(3))(2) resulted in the selective formation of seven-membered di-, tri-, and tetraspirocyclic phosphazene compounds (NPPh(2))[NP(OCH(2)CH=CHCH(2)O)](2) (5), N(3)P(3)(OCH(2)CH=CHCH(2)O)(3) (6), and N(4)P(4)(OCH(2)CH=CHCH(2)O)(4) (7) and the dispirocyclic S-phenylthionylphosphazene compound (NS(O)Ph)[NP(OCH(2)CH=CHCH(2)O)](2) (8). X-ray structural studies of 5-8 indicated that the double bond of the spiro-substituted cycloalkene units is in the cis orientation in these compounds. In contrast to the reactions of 1-4, RCM reactions of the homoallyloxy-derived cyclophosphazene and thionylphosphazene (NPPh(2))[NP(OCH(2)CH(2)CH=CH(2))(2)](2) (9) and (NS(O)Ph)[NP(OCH(2)CH(2)CH=CH(2))(2)](2) (10) with the same catalyst resulted in the formation of 11-membered diansa compounds NPPh(2)[NP(OCH(2)CH(2)CH=CHCH(2)CH(2)O)](2) (11) and (NS(O)Ph)[NP(OCH(2)CH(2)CH=CHCH(2)CH(2)O)](2) (13) and the intermolecular doubly bridged ansa-dibino-ansa compounds 12 and 14. The X-ray structural studies of compounds 11 and 13 indicated that the double bonds of the ansa-substituted cycloalkene units are in the trans orientation in these compounds. The geminal bis(homoallyloxy)tetraphenylcyclotriphosphazene [NPPh(2)](2)[NP(OCH(2)CH(2)CH=CH(2))(2)] (15) upon RCM with Grubbs first- and second-generation catalysts gave the spirocyclic product [NPPh(2)](2)[NP(OCH(2)CH(2)CH=CHCH(2)CH(2)O)] (16) along with the geminal dibino-substituted dimeric compound [NPPh(2)](2)[NP(OCH(2)CH(2)CH=CHCH(2)CH(2)O)(2)PN][NPPh(2)](2) (17) as the major product. The dibino compound 17, upon reaction with the Grubbs second-generation catalyst, was found to undergo a unique ring-opening metathesis reaction, opening up the bino bridges and partially converting to the spirocyclic compound 16.  相似文献   

8.
Electronic structures and spectroscopic properties of the binuclear head-to-tail [Au(2)(PH(2)CH(2)SH)(2)](2+) (1) complex were investigated by ab initio calculations. The solvent effect of the complex in the acetonitrile solution was taken into account by the weakly solvated [Au(2)(PH(2)CH(2)SH)(2)](2+).(MeCN)(2) (2) moiety in the calculations. The ground-state geometries of 1 and 2 were fully optimized by the MP2 method, while their excited-state structures were optimized by the CIS method. Aurophilic attraction apparently exists between the two Au(I) atoms in the ground state and is strongly enhanced in the excited state. A high-energy phosphorescent emission was calculated at 337 nm for 1 in the absence of the interactions with solvent molecules and/or counteranion in solid state; however the lowest-energy emission of 2 was obtained at 614 nm with the nature of (3)A(u)(s(sigma)) --> (1)A(g)(d(sigma)) (metal-centered, MC) transition. The coordination of acetonitrile to the gold atom in solution results in a dramatic red shift of emission wavelength. The investigations on the head-to-tail [Au(2)(PH(2)CH(2)SCH(3))(2)](2+) (5) and [Au(2)(PH(2)CH(2)SCH(3))(2)](2+).(MeCN)(2) (6) moieties indicate that the CH(3) substituent on the S atom causes blue shifts of emission wavelength for 5 and 6 with respect to 1 and 2. By comparison between Au(I) thioether 1 and head-to-tail Au(I) thiolate [Au(2)(PH(2)CH(2)S)(2)] (7), it is concluded that the S-->Au dative bonding results in evidently different transition characteristics from the S-Au covalent bonding in the Au(I) thioether/thiolate complexes.  相似文献   

9.
Four different dianionic bis(amidinate) ligands ((iPr)L(DBF)(2)(-), (tBu,Et)L(DBF)(2)(-), (iPr)L(Xan)(2)(-), (tBu,Et)L(Xan)(2)(-)) featuring rigid dibenzofuran (DBF) and 9,9-dimethylxanthene (Xan) backbones have been used to prepare several new dititanium complexes. Reaction of the free-base bis(amidines) (LH(2)) with 2 equiv of Ti(NMe(2))(4) forms the hexaamido derivatives (iPr)L(DBF)Ti(2)(NMe(2))(6) (1), (tBu,Et)L(DBF)Ti(2)(NMe(2))(6) (2), (iPr)L(Xan)Ti(2)(NMe(2))(6) (3), and (tBu,Et)L(Xan)Ti(2)(NMe(2))(6) (4) in good yields. Compound 4, which features an unsymmetrically substituted bis(amidinate) ligand, was isolated as an 8:1 mixture of rotational diastereomers with C(2) and C(s)() symmetry, respectively. The two diastereomers interconvert upon heating, and at equilibrium the C(2) isomer is preferred thermodynamically by 0.2 kcal/mol. Compound 3 reacts with excess Me(3)SiCl in toluene to form the mixed amido-chloride derivative (iPr)L(Xan)Ti(2)(NMe(2))(2)Cl(4) (5) in low-moderate yield. Alternatively, 5 is also prepared by reaction of (iPr)L(Xan)H(2) with 2 equiv of Ti(NMe(2))(2)Cl(2) in good yield. Compound 3 reacts with CO(2) to form the red carbamate derivative (iPr)L(Xan)Ti(2)(NMe(2))(4)(O(2)CNMe(2))(2) (6) in moderate yield. Infrared data for 6 indicates bidentate coordination of the carbamate ligands. Metathesis reaction of (iPr)L(Xan)Li(2) with 2 equiv of CpTiCl(3) affords (iPr)L(Xan)Ti(2)Cp(2)Cl(4) (7) in moderate yield. Reduction of 7 with 1% Na amalgam in toluene solution affords the paramagnetic dititanium(III) complex (iPr)L(Xan)Ti(2)Cp(2)Cl(2) (8) in good yield. Structural studies reveal that 8 features two bridging chloride ligands. Reaction of the free-base bis(amidines) with 2 equiv of CpTiMe(3) forms the red sigma-alkyl derivatives (iPr)L(DBF)Ti(2)Cp(2)Me(4) (9), (tBu,Et)L(DBF)Ti(2)Cp(2)Me(4) (10), and (iPr)L(Xan)Ti(2)Cp(2)Me(4) (11) in good yields. Structural data are presented for compounds 4, 5, 8, and 9.  相似文献   

10.
Jimtaisong A  Luck RL 《Inorganic chemistry》2006,45(25):10391-10402
The dioxo tungsten(VI) and molybdenum(VI) complexes WCl2(O)2(OPMePh2)2, WCl2(O)2dppmO2, and MoCl2(O)2dppmO2, the oxoperoxo compounds WCl2(O)(O2)(OPMePh2)2, WCl2(O)(O2)dppmO2, and MoCl2(O)(O2)dppmO2, and the oxodiperoxo complexes, W(O)(O2)2dppmO2 and Mo(O)(O2)2dppmO2 have been prepared and characterized by IR spectroscopy, 31P NMR spectroscopy, elemental analysis, and X-ray crystallography. The structural and X-ray crystallographic data of compounds WCl2(O)2(OPMePh2)2, WCl2(O)(O2)(OPMePh2)2, MoCl2(O)2dppmO2.4H10O, WCl2(O)2dppmO2, Mo(O)(O2)2dppmO2, and W(O)(O2)2dppmO2 are also detailed. All complexes were studied as catalysts for cis-cyclooctene epoxidation in the presence of tert-butyl hydroperoxide (TBHP) or H2O2 as an oxidant. The Mo-based catalysts showed a superior reactivity over W-based catalysts in the TBHP system. On the other hand, in the H2O2 system, the W-based catalysts (accomplishing nearly 100% epoxidation of cyclooctene in 6 h) are more reactive than the Mo catalysts (<45% under some conditions). Various solvent systems have been investigated, and ethanol is the most suitable solvent for the H2O2 system.  相似文献   

11.
Treatment of IU(DME)(NC[(t)Bu]Mes)(3) (2-I-DME) with 4 equiv of KC(8) and 0.5 equiv of naphthalene in DME allowed the isolation of a naphthalene-bridged compound, K(2)(mu-eta(6),eta(6)-C(10)H(8))[U(NC[(t)Bu]Mes)(3)](2) (K(2)-2(2)-mu-C(10)H(8)), in 60% yield as a dark brown powder. The twelve U-C distances are rather short, varying from 2.565(11) to 2.749(10) A. Treatment of M(2)-2(2)-mu-C(10)H(8) (M = Na, K) with 2 equiv of 1,3,5,7-cyclooctatetraene afforded a mixture of two products: M-2-COT and 2(2)-mu-COT. Compound 2(2)-mu-COT can be assembled independently in 90% yield by salt elimination upon reaction of M-2-COT with iodide 2-I-DME. The U-C(arene) distance in compound 2(2)-mu-COT is longer than that in its naphthalene counterpart K(2)-2(2)-mu-C(10)H(8)(2.822 vs 2.634 A), in accord with bonding considerations. A DFT study performed on model compounds for both M(2)-2(2)-mu-C(10)H(8) and 2(2)-mu-COT indicates that the delta bonds present in the former compound show better covalent overlap.  相似文献   

12.
We discuss the importance of the topography of the potential energy hypersurface for the ionic conductivity of perovskite-related A(2)B(2)O(5) oxides. A correlation between the energetic preference of the cations for different coordination geometries and the ionic conductivity is proposed based on a first principles periodic density functional theory study of selected possible structures for Ba(2)In(2)O(5), Sr(2)Fe(2)O(5), Sr(2)Mn(2)O(5), and La(2)Ni(2)O(5). There are a large number of low-energy local minima on the potential energy hypersurfaces of the two first compounds due to an energetic preference for BO(4) tetrahedra. Tetrahedral environments are energetically unfavorable for Mn(III) in Sr(2)Mn(2)O(5) and for Ni(II) in La(2)Ni(2)O(5), and the number of low-energy configurations is relatively low in these two cases. Consistent with our findings, in contrast to Sr(2)Fe(2)O(5) and Ba(2)In(2)O(5), Sr(2)Mn(2)O(5) and La(2)Ni(2)O(5) do not exhibit transitions to disordered phases on heating, and there appear to be no reports of enhanced ionic conductivity for these compounds. Thus we suggest that the possibility of many different oxygen orderings associated with a variety of low-energy connectivity schemes within tetrahedral layers such as in the brownmillerite-based structures of Sr(2)Fe(2)O(5) and Ba(2)In(2)O(5) is a prerequisite for high ionic conductivity in perovskite-related A(2)B(2)O(5) oxides.  相似文献   

13.
The nucleophilicity of the [Pt(2)S(2)] core in [[Ph(2)P(CH(2))(n)PPh(2)]Pt(mu-S)(2)Pt[Ph(2)P(CH(2))(n)PPh(2)]] (n = 3, dppp (1); n = 2, dppe (2)) metalloligands toward the CH(2)Cl(2) solvent has been thoroughly studied. Complex 1, which has been obtained and characterized by X-ray diffraction, is structurally related to 2 and consists of dinuclear molecules with a hinged [Pt(2)S(2)] central ring. The reaction of 1 and 2 with CH(2)Cl(2) has been followed by means of (31)P, (1)H, and (13)C NMR, electrospray ionization mass spectrometry, and X-ray data. Although both reactions proceed at different rates, the first steps are common and lead to a mixture of the corresponding mononuclear complexes [Pt[Ph(2)P(CH(2))(n)PPh(2)](S(2)CH(2))], n = 3 (7), 2 (8), and [Pt[Ph(2)P(CH(2))(n)PPh(2)]Cl(2)], n = 3 (9), 2 (10). Theoretical calculations give support to the proposed pathway for the disintegration process of the [Pt(2)S(2)] ring. Only in the case of 1, the reaction proceeds further yielding [Pt(2)(dppp)(2)[mu-(SCH(2)SCH(2)S)-S,S']]Cl(2) (11). To confirm the sequence of the reactions leading from 1 and 2 to the final products 9 and 11 or 8 and 10, respectively, complexes 7, 8, and 11 have been synthesized and structurally characterized. Additional experiments have allowed elucidation of the reaction mechanism involved from 7 to 11, and thus, the origin of the CH(2) groups that participate in the expansion of the (SCH(2)S)(2-) ligand in 7 to afford the bridging (SCH(2)SCH(2)S)(2-) ligand in 11 has been established. The X-ray structure of 11 is totally unprecedented and consists of a hinged [(dppp)Pt(mu-S)(2)Pt(dppp)] core capped by a CH(2)SCH(2) fragment.  相似文献   

14.
The reaction of a 1:1 mixture of (H(2)O)(5)Cr((16)O(2))(2+) and (H(2)O)(5)Cr((18)O(2))(2+) at pH 1 did not yield measurable amounts of (16)O(18)O. This result rules out a Russell-type mechanism (2(H(2)O)(5)CrO(2)(2+) --> 2(H(2)O)(5)CrO(2+) + O(2)) for the bimolecular decomposition reaction. Evidence is presented in support of unimolecular (S(H)1) and bimolecular (S(H)2) homolyses as initial steps in the decomposition of (H(2)O)(5)CrO(2)(2+) in strongly acidic solutions (pH 相似文献   

15.
In the quest for low-molecular-weight metal sulfur complexes that bind nitrogenase-relevant small molecules and can serve as model complexes for nitrogenase, compounds with the [Ru(PiPr(3))('N(2)Me(2)S(2)')] fragment were found ('N(2)Me(2)S(2)'(2-)=1,2-ethanediamine-N,N'-dimethyl-N,N'-bis(2-benzenethiolate)(2-)). This fragment enabled the synthesis of a first series of chiral metal sulfur complexes, [Ru(L)(PiPr(3))('N(2)Me(2)S(2)')] with L=N(2), N(2)H(2), N(2)H(4), and NH(3), that meet the biological constraint of forming under mild conditions. The reaction of [Ru(NCCH(3))(PiPr(3))('N(2)Me(2)S(2)')] (1) with NH(3) gave the ammonia complex [Ru(NH(3))(PiPr(3))('N(2)Me(2)S(2)')] (4), which readily exchanged NH(3) for N(2) to yield the mononuclear dinitrogen complex [Ru(N(2))(PiPr(3))('N(2)Me(2)S(2)')] (2) in almost quantitative yield. Complex 2, obtained by this new efficient synthesis, was the starting material for the synthesis of dinuclear (R,R)- and (S,S)-[micro-N(2)[Ru(PiPr(3))('N(2)Me(2)S(2)')](2)] ((R,R)-/(S,S)-3). (Both 2 and 3 have been reported previously.) The as-yet inexplicable behavior of complex 3 to form also the R,S isomer in solution has been revealed by DFT calculations and (2)D NMR spectroscopy studies. The reaction of 1 or 2 with anhydrous hydrazine yielded the hydrazine complex [Ru(N(2)H(4))(PiPr(3))('N(2)Me(2)S(2)')] (6), which is a highly reactive intermediate. Disproportionation of 6 resulted in the formation of mononuclear diazene complexes, the ammonia complex 4, and finally the dinuclear diazene complex [micro-N(2)H(2)[Ru(PiPr(3))('N(2)Me(2)S(2)')](2)] (5). Dinuclear complex 5 could also be obtained directly in an independent synthesis from 1 and N(2)H(2), which was generated in situ by acidolysis of K(2)N(2)(CO(2))(2). Treatment of 6 with CH(2)Cl(2), however, formed a chloromethylated diazene species [[Ru(PiPr(3))('N(2)Me(2)S(2)')]-micro-N(2)H(2)[Ru(Cl)('N(2)Me(2)S(2)CH(2)Cl')]] (9) ('N(2)Me(2)S(2)CH(2)Cl'(2-) =1,2-ethanediamine-N,N'-dimethyl-N-(2-benzenethiolate)(1-)-N'-(2-benzenechloromethylthioether)(1-)]. The molecular structures of 4, 5, and 9 were determined by X-ray crystal structure analysis, and the labile N(2)H(4) complex 6 was characterized by NMR spectroscopy.  相似文献   

16.
Hydrothermal reactions of bis(benzimidazol-2-ylmethyl)imino(methylenephosphonic acid) {[(C(7)H(5)N(2))CH(2)]2NCH(2)PO(3)H(2), bbimpH2} with metal salts result in four new compounds, namely, Mn2{[(C(7)H(5)N(2))CH2]2NCH(2)PO(3)}2(H2O)2.2H2O (1), Cd2{[(C(7)H(5)N(2))CH2]2NCH(2)PO(3)}2.2H2O (2), Fe2{[(C(7)H(5)N(2))CH2]2NCH(2)PO(3)}2.H2O (3), and CuI(2){[(C(7)H(5)N(2))CH2]2NCH(2)P(OH)O2}2 (4). Compounds 1 and 2 have dinuclear structures in which two {MN(3)O(3)} octahedra are linked through edge sharing. In compound 3, a chain structure is observed where the {FeN(3)O(2)} trigonal bipyramids are linked by {CPO(3)} tetrahedra through corner-sharing. The structure of compound 4 is unique. The monovalent Cu(I) ions are connected by the imidazole nitrogen atoms from the bbimp(2-) ligands forming a 16-member metallomacrocycle. These metallomacrocycles are further connected by the phosphonate oxygen atoms, leading to a two-dimensional net containing 16- and 32-member rings. Magnetic studies of 1 and 3 reveal that weak ferromagnetic interactions are mediated between magnetic centers in compound 1, while antiferromagnetic interactions were observed in compound 3.  相似文献   

17.
The preparation and structural characterization of scandium and f-element complexes derived from the disiloxanediolate dianion, [(Ph2SiO)2O]2-, are reported. Reactions of in situ prepared Ln[N(SiMe3)2]3 (Ln = Eu, Sm, Gd) with (Ph2SiOH)2O in different stoichiometries afforded the lanthanide disiloxanediolates [Eu[[(Ph2SiO)2O]Li(Et2O)]3] (1), [[[(Ph2SiO)2O]Li(dme)]2SmCl(dme)] (2), and [[[((Ph2SiO)2O]Li(thf)2]2GdN(SiMe3)2] (3). In situ formed (Ph2SiOLi)2O reacted with anhydrous NdBr3 (molar ratio 3:1) to give polymeric [[Nd[(Ph2SiO)2O]3[mu-Li(thf)]2[mu2LiBrLi(thf)(Et2O)]]n] (4). Treatment of 3 with Ph2Si(OH)2 in the presence of acetonitrile yielded the dilithium trisiloxanediolate derivative [[Ph2Si(OSiPh2O)2][Li(MeCN)]2]2 (5), which according to an X-ray analysis displays an Li4O4 heterocubane structure. The trinuclear scandium complex [[[(Ph2SiO)2O]Sc(acac)2]2Sc(acac)] (6) was obtained by reaction of [(C5Me5)Sc(acac)2] (C5Me5 = eta5-pentamethylcyclopentadienyl) with (Ph2SiOH)2O in a 3:2 molar ratio. Selective formation of the colorless uranium(VI) derivative [U[Ph2Si(OSiPh20)2]2[(Ph2SiO)2O]] (7) was observed when uranocene, U(eta8-C8H8)2, was allowed to react with (Ph2SiOH)2O. An X-ray diffraction study of the solvated derivative [U[Ph2Si(OSiPh2O)2]2[(Ph2SiO)2O]].Et2O.TMEDA (TMEDA= N,N,N',N'-tetramethyl-ethylenediamine) (7a) revealed the presence of both the original [(Ph2SiO)2O]2- dianion as well as the ring-enlarged [Ph2Si(OSiPh2O)2]2- ligand in the same molecule.  相似文献   

18.
The synthesis of a range of alkyl/chloro-gallium alkoxide and amido/alkoxide compounds was achieved via a series of protonolysis and alcoholysis steps. The initial reaction involved the synthesis of [Me(Cl)Ga{N(SiMe(3))(2)}](2) (1) via methyl group transfer from the reaction of GaCl(3) with two equivalents of LiN(SiMe(3))(2). Reaction of 1 with varying amounts of ROH resulted in the formation of [Me(Cl)Ga(OR)](2) (2, R = CH(2)CH(2)OMe; 3, CH(CH(3))CH(2)NMe(2)), [Me(Cl)Ga{N(SiMe(3))(2)}(μ(2)-OR)Ga(Cl)Me] (4, R = CH(2)CH(2)NMe(2)), or [MeGa(OR)(2)] (5, R = CH(CH(3))CH(2)NMe(2)). Compound 4 represents an intermediate in the formation of dimeric complexes, of the type [Me(Cl)Ga(OR)](2), when formed from compound [Me(Cl)Ga{N(SiMe(3))(2)}](2). A methylgallium amido/alkoxide complex [MeGa{N(SiMe(3))(2)}(OCH(2)CH(2)OMe)](2) (6) was isolated when 2 was further reacted with LiN(SiMe(3))(2). In addition, reaction of 2 with HO(t)Bu resulted in a simple alcohol/alkoxide exchange and formation of [Me(Cl)Ga(O(t)Bu)](2) (7). In contrast to the formation of 1, the in situ reaction of GaCl(3) with one equivalent of LiN(SiMe(3))(2) yielded [Cl(2)Ga{N(SiMe(3))(2)}](2) in low yield, where no methyl group transfer has occurred. Reaction of alcohol with [Cl(2)Ga{N(SiMe(3))(2)}](2) was then found to yield [Cl(2)Ga(OR)](2) (8, R = CH(2)CH(2)NMe(2)), and further reaction of 8 with LiN(SiMe(3))(2) yielded the gallium amido alkoxide complex, [ClGa{N(SiMe(3))(2)}(OR)](2) (9, R = CH(2)CH(2)NMe(2)), similar to 6. The structures of compounds 4, 5, 7, and 8 have been determined by single-crystal X-ray diffraction.  相似文献   

19.
A series of dinuclear chelate complexes of the general composition [Rh2(kappa2-L)2(mu-CR2)2(mu-SbiPr3)] (R = Ph, p-Tol; L = CF3CO2-, acac-, acac-f3-) and [Rh2Cl(kappa2-L)(mu-CR2)2(mu-SbiPr3)] (R = Ph, p-Tol; L = acac-, acac-f3-) has been prepared by replacement of the chloro ligands in the precursors [Rh2Cl2(mu-CR2)2(mu-SbiPr3)] by anionic chelates. The lability of the SbiPr3 bridge in the rhodium dimers is illustrated by the reactions of [Rh2(kappa2-acac)2(mu-CR2)2(mu-SbiPr3)] (7, 8) with Lewis bases such as CO, CNtBu, and SbEt3 which lead to the formation of the substitution products [Rh2(kappa2-acac)2(mu-CR2)2(mu-L')] (13-16) in excellent yields. Treatment of 7 and 8 with sterically demanding tertiary phosphanes PR3 (R3 = iPr3, iPr2Ph, iPrPh2, Ph3) affords the mixed-valence Rh0-RhII complexes [(kappa2-acac)2Rh(mu-CPh2)2Rh(PR3)] (21-24) and [(kappa2-acac)2Rh(mu-C(p-Tol)2]2Rh(PiPr3)] (25) for which there is no precedence. The terminal PiPr3 ligand of 21 is easily displaced by alkynes, CNtBu, and CO to give, by preserving the [(kappa2-acac)2Rh(mu-CPh2)2Rh] molecular core, the related dinuclear compounds 26-31 in which the coordination number of the Rh0 center is 3, 4, or 5. The molecular structures of [Rh2Cl(kappa2-acac)(mu-CPh2)2(mu-SbiPr3)] (5), [Rh2(kappa2-acac)2(mu-CPh2)2(mu-CO)] (13), [(kappa2-acac)2Rh(mu-CPh2)2Rh(PiPr3)] (21), and [(kappa2-acac)2Rh(mu-CPh2)2Rh(CNtBu)2] (30) have been determined crystallographically.  相似文献   

20.
The protonation of [Ru(2)(CO)(4)(mu-H)(mu-PBu(t)()(2))(mu-dppm)(mu-eta(2)-ONNO)] (1) with HBF(4) occurs at the oxygen of the noncoordinating side of the trans-hyponitrite ligand to give [Ru(2)(CO)(4)(mu-H)(mu-PBu(t)()(2))(mu-dppm)(mu-eta(2)-ONNOH)][BF(4)] (2) in good yield. The monoprotonated hyponitrite in 2 is deprotonated easily by strong bases to regenerate 1. Furthermore, 1 reacts with the methylating reagent [Me(3)O][BF(4)] to afford [Ru(2)(CO)(4)(mu-H)(mu-PBu(t)()(2))(mu-dppm)(mu-eta(2)-ONNOMe)][BF(4)] (3). The molecular structures of 2 and 3 have been determined crystallographically, and the structure of 2 is discussed with the results of the DFT/B3LYP calculations on the model complex [Ru(2)(CO)(4)(mu-H)(mu-PH(2))(mu-H(2)PCH(2)PH(2))(mu-eta(2)-ONNOH)](+) (2a). Moreover, the thermolysis of 2 in ethanol affords [Ru(2)(CO)(4)(mu-H)(mu-OH)(mu-PBu(t)()(2))(mu-dppm)][BF(4)] (4) in high yield, and the deprotonation of 4 by DBU in THF yields the novel complex [Ru(2)(CO)(4)(mu-OH)(mu-PBu(t)()(2))(mu-dppm)] (5).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号