首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Liang Cao  Michal Kruk 《Adsorption》2010,16(4-5):465-472
A variety of ordered mesoporous carbons (OMCs) were synthesized using ordered mesoporous silicas (OMSs) as hard templates and the mesophase pitch (MP) as a carbon precursor. The synthesis included the mixing of OMS with MP, the infiltration of OMS with MP at 450–550?°C and the carbonization of MP in OMS/MP composite followed by the dissolution of the OMS template. OMCs with structures of two-dimensional hexagonal arrays of nanorods and three-dimensional arrays of nanospheres were obtained through the replication of silica templates, including large-pore SBA-15, KIT-6, large-pore FDU-12 and SBA-16. In particular, 2-D hexagonal array of carbon nanorods (CMK-3 carbon) with (100) interplanar spacing of ~13 nm as well as an array of carbon nanospheres arranged in the face-centered cubic structure with the unit-cell parameter of 33 nm were successfully prepared. The specific surface areas of the resulting carbons were up to 400 m2/g, and the total pore volumes were up to 0.43 cm3/g, with the highest values achieved when the MP infiltration temperature was 500?°C. The OMCs exhibited narrow mesopore size distributions. As inferred from XRD, the frameworks of OMCs featured semi-graphitic structures even though moderate carbonization temperature (850?°C) was employed.  相似文献   

2.
A new technology of obtaining activated carbons by physical and direct activation of biomass with the use of microwave radiation is described. The effect of activation temperature (700 and 800 °C) and two periods of time (15 and 30 min) on the textural parameters, acid–base character of the surface and sorption properties of activated carbons was tested. The resulting carbons were characterized by low-temperature nitrogen sorption and determination of pH as well as the number of surface oxygen groups. The sorption properties of the activated carbons obtained were characterized by determination of nitrogen dioxide and hydrogen sulphide adsorption in dry and wet conditions as well as by iodine removal from aqueous solution. The final products were adsorbents of surface area ranging from 291 to 368 m2/g and pore volume from 0.20 to 0.26 cm3/g, showing basic character of the surface. The results obtained in our study have proved that suitable choice of the pyrolysis and activation procedure for hay with the use of microwave radiation permit producing adsorbents with good capacity toward toxic gases of acidic character as well as inorganic pollutants of molecules of size similar to that of iodine molecules.  相似文献   

3.
A technology for obtaining carbonaceous adsorbents by physical and chemical activation of waste materials from coffee industry is described. The effect of pyrolysis temperature and type of activation procedure on the textural parameters, acid–base character of the surface and sorption properties of activated carbons has been tested. The resulting carbons were characterized by low-temperature nitrogen sorption, determination of pH and the number of surface oxygen groups. The sorption properties of the activated carbons obtained were characterized by evaluation of nitrogen dioxide adsorption in dry and wet conditions. The final products were adsorbents of specific surface area ranging from 5 to 2,076 m2/g and pore volume from 0.03 to 1.25 cm3/g, showing very diverse acidic–basic character of the surface. The results obtained in our study have proved that a suitable choice of the pyrolysis and activation procedure for coffee industry wastes permits production of adsorbents with high sorption capacity of nitrogen dioxide, reaching to 44.5 and 84.1 mg NO2/g in dry and wet conditions, respectively.  相似文献   

4.
A novel pyridine-containing metal-organic framework (MOF, [Zn(bpdc)DMA]·DMF, bpdc = 2,2′-bipyridine-5,5′-dicarboxylate) was directly carbonized at different temperature to produce nitrogen-doped porous carbons (NPCs). The as-prepared porous carbons, NPC800 (obtained at 800 °C) and NPC1000 (obtained at 1000 °C), were characterized by scanning electron microscopy, X-ray powder diffraction, N2 sorption isotherms, and X-ray photoelectron spectroscopy (XPS). The results from elemental analysis and XPS confirmed that the pyridine groups in MOF served as nitrogen sources to produce NPCs, and NPC800 possessed the higher nitrogen content than NPC1000. N2 sorption data demonstrated that NPC800 exhibited the larger specific surface area and pore volume than NPC1000. The capacitive properties of NPC800 and NPC1000 were investigated in KOH aqueous electrolyte by cyclic voltammetry and galvanostatic charge–discharge curves. NPC800 showed the higher specific capacitance (226.6 F g?1 at 1 A g?1) than NPC1000 and retained 178.0 F g?1 even at a high current density up to 10 A g?1. It was found that the donation of N species to capacitance was more than the role of porosity in view of their synergetic effect.  相似文献   

5.
In this work, porous carbon with a high specific surface area as electrode materials for supercapacitors are obtained by a carbonization process at various temperatures from 700 °C to 1000 °C without activation process using poly(vinylidene fluoride) (PVDF) as a carbon precursor. The electrochemical performance is characterized by cyclic voltammetry and galvanostatic charge–discharge cycling performance using two-electrode system in 6.0 M KOH as an aqueous electrolyte. The results indicate that carbonization temperature significantly affected the specific surface area and pore volume of the PVDF-derived carbons and their capacitive behavior. In particular, the electrochemical performance of the prepared PVDF-derived carbon is determined by both the electric double-layer capacitance and the pseudo-capacitance resulting from the residual surface functional groups on PVDF-derived carbons.  相似文献   

6.
7.
Steam-activated carbons DS2 and DS5 were prepared by gasifying 600 °C-date pits carbonization products with steam at 950 °C to burn-off = 20 and 50%, respectively. The textural properties of these carbons were determined from the nitrogen adsorption at ?196 °C. The chemistry of the carbon surface was determined from the surface pH and from neutralization of the surface carbon–oxygen groups of basic and acidic type. The kinetic and equilibrium adsorption of MB and RY on DS2 and DS5 was determined at 27 and 37 °C and at initial sorption solution pH 3–7.DS2 and DS5 have expanded surface area, large total pore volume and contain both micro and mesoporosity. They have on their surface basic and acidic groups of different strength and functionality. This enhanced the sorption of the cationic dye (MB) and of the anionic dye (RY). The adsorption of MB and RY on DS2 and DS5 involves intraparticle diffusion and followed pseudo-second order kinetics. The adsorption isotherms were applicable to the Langmuir isotherm and high monolayer capacities for MB and RY dyes were evaluated indicating the high efficiencies of the carbons for dye adsorption.  相似文献   

8.
Nitrogen-containing carbon aerogel was prepared from resorcinol–melamine–formaldehyde (R–M–F) polymer gel precursor. The polymer gel was supercritically dried with CO2, and the carbonization of the resulting polymer aerogel under nitrogen atmosphere at 900 °C yielded the carbon aerogel. The polymer and carbon aerogels were characterized with TG/DTA–MS, low-temperature nitrogen adsorption/desorption (??196 °C), FTIR, Raman, powder XRD and SEM–EDX techniques. The thermal decomposition of the polymer aerogel had two major steps. The first step was at 150 °C, where the unreacted monomers and the residual solvent were released, and the second one at 300 °C, where the species belonging to the polymer network decomposition could be detected. The pyrolytic conversion of the polymer aerogel was successful, as 0.89 at.% nitrogen was retained in the carbon matrix. The nitrogen-doped carbon aerogel was amorphous and possessed a hierarchical porous structure. It had a significant specific surface area (890 m2 g?1) and pore volume (4.7 cm3 g?1). TG/DTA–MS measurement revealed that during storage in ambient conditions surface functional groups formed, which were released upon annealing.  相似文献   

9.
Porous carbons have been synthesized by a direct carbonization of potassium biphthalate without an activation process. The experimental results demonstrate that the carbonization temperature plays a crucial role in determining the surface area and pore structure as well as the correlative capacitive performance. The carbon-700/800/900 samples display surface areas of 672, 1,023, and 1,380 m2 g?1 and total pore volumes of 0.38, 0.56, and 0.78 cm3 g?1, respectively. The specific capacitances of the carbon-700/800/900 samples are 300.4, 272.3, and 243.4 F g?1, respectively, at a current density of 0.5 A g?1. More importantly, the carbon-900 sample possesses the highest capacitance retention (~98.4 %) even undergoing charge–discharge 10,000 times. The potassium biphthalate used as a carbon source is inexpensive and commercially available, making it promising for the large-scale production of porous carbons as an excellent electrode material for supercapacitors.  相似文献   

10.
Mesoporous carbon of regular structure was subjected to oxidation by ammonium persulfate at 30, 60 or 100 °C. The mesostructure and pore evolution were characterised by XRD, TEM, and N2 sorption techniques. The functional groups present on the surface of the carbon materials were identified by FTIR and thermogravimetric studies. It was established that the micropores and small mesopores could be blocked by the surface oxides attached under mild oxidation. High densities of surface oxygen complexes, especially carboxylic groups, were generated on the surface of mesoporous carbons. All materials obtained were tested for the removal of Auramine-O from aqueous solution. Adsorption experiments were carried out as batch studies at different contact time, pH and initial dye concentration. Removal of this cationic dye in basic solutions was more effective than in acidic solutions. The highest sorption capacity towards Auramine-O was obtained for the carbon sample oxidised by ammonium persulfate solution at 100 °C. Fitting equilibrium data to Langmuir and Freundlich isotherms showed that Langmuir model was more suitable to describe the Auramine-O adsorption. The changes in standard enthalpy (ΔH0), standard entropy (ΔS0) and Gibbs free energy (ΔG0) were analysed. Thermodynamic study showed that the adsorption of Auramine-O was a spontaneous and exothermic process.  相似文献   

11.
Hierarchical porous carbons (HPCs) with abundant mesopores have been prepared by a facile route from the starch that was pretreated by calcium acetate. The scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and N2 adsorption–desorption tests show that hierarchical porous carbons with bimodal mesopores have been obtained. Moreover, the pore sizes are tunable by simply adjusting the reactants ratio and carbonization temperature. The as-synthesized hierarchical porous carbon materials (HPCs-2-800) possesses the highest Brunauer-Emmett-Teller (BET)-specific surface area of 464 m2 g?1 and mesoporous volume of 0.663 cm3 g?1 at the carbonization temperature of 800 °C and starch to calcium acetate mass ratio of 2. Electrochemical measurements also display that the HPCs-2-800 electrodes have a high reversible capacity of 244 F g?1 at the current density of 0.1 A g?1 and 182 F g?1 at the current density of 10 A g?1. When the current density is elevated from 0.1 to 10 A g?1, the high capacitance retention of 74.6 % reveals a good rate performance. Long charge–discharge cycling measurements disclose good stabilities over 25,000 cycles at different current densities of 1–10 A g?1 (5000 cycles at each current density) for HPCs-2-800 electrode. The cycling results indicate a high capacitance retention of 99.6 % over 5000 charge–discharge cycles even at the current density of 10 A g?1. The excellent supercapacitive performances imply that HPCs-2-800 is a promising candidate for supercapacitors.  相似文献   

12.
Nanostructured TiO2/ZrO2 composite membranes with varying compositions were obtained by sol–gel technique. The influence of 0–30 mol% zirconia doping on microstructure, water permeability, photocatalytic and physical separation properties, removal of methyl violet of textile industries wastewater and thermal and mechanical stability of titania/zirconia composite membranes was described. Firstly, alumina supports were coated with TiO2 intermediate layers using the colloidal sol–gel route. The TiO2/ZrO2 composite sols were prepared via a polymeric sol–gel method and dip-coated on TiO2 intermediate layer. The samples were characterized by DLS, TG-DTA, XRD, FTIR, BET-BJH, UV–visible, SEM, TEM and AFM. It was shown that zirconia retards the phase transformation of anatase to rutile until at least 700 °C. The minimum pore size and maximum surface area obtained were 1.2 nm and 153 m2/g, respectively, attributed to the sample with 20 mol% zirconia. The mechanical strength of titania membranes was significantly improved by addition of zirconia. The most methyl violet removal efficiency obtained, with and without UV-irradiation, is 80.8 and 72.6%, respectively, attributed to the sample with 20 mol% zirconia.  相似文献   

13.
This study describes the facile synthesis of platinum nanoparticle-containing porous carbons (Pt/C) by carbonization of freeze-dried agarose gels containing potassium tetrachloroplatinate under a nitrogen atmosphere at 800 °C. By adjusting the ratio between agarose and platinate in the freeze-dried gels, the Pt content in the final Pt/C products could be systematically varied from 0–10 wt.%. Transmission electron microscopy, inductively coupled plasma atomic emission spectrometry, X-ray photoelectron spectroscopy, Raman spectroscopy, and nitrogen physisorption measurements revealed that the Pt/C materials obtained by this method possess high surface areas (350–500 m2 g?1), narrow Pt nanoparticle size distributions (6 ± 3 nm) and nanocrystalline graphite –like carbon character. By immobilization of glucose oxidase on the surface of a 4 wt.% Pt/C electrocatalyst prepared by this route, a very sensitive amperometric glucose biosensor was obtained (response time <2 min, sensitivity 1.9 mA M?1; and a linear response with glucose concentration up to 10 mM). The simplicity and versatility of the described synthetic method suggests its application to the preparation of carbon supported noble metal catalysts including palladium/C and gold/C. Figure
This study describes the facile synthesis of platinum nanoparticle-containing porous carbons (Pt/C) by carbonization of freeze-dried agarose gels containing potassium tetrachloroplatinate. The Pt/C materials exhibited excellent electrocatalytic activities, as demonstrated by their successful integration into amperometric glucose biosensor  相似文献   

14.
The following nitrogen-containing supports with various nitrogen contents and structure and texture properties were synthesized: carbon nanofibers (N-CNFs) and amorphous microporous carbon materials (N-AMCMs). It was found that the above characteristics can be regulated by varying synthesis conditions: precursor compositions and reaction temperature and time. Mesoporous nitrogen-containing CNFs with a specific surface area of 30–350 m2/g and a pore volume of 0.10–0.83 cm3/g were formed by the catalytic decomposition of a mixture of ethylene with ammonia at 450–675°C. Microporous materials (N-AMCMs) with a specific surface area of 472–3436 m2/g and a micropore volume of 0.22–1.88 cm3/g were prepared by the carbonization of nitrogen-containing organic compounds at 700–900°C. An increase in the carbonization temperature and reaction time resulted in an increase in the specific surface area and microporosity of N-AMCMs, whereas lower temperatures of 450–550°C and reaction times of 1–3 h were optimal for the preparation of N-CNFs with a developed texture. It was found that milder synthesis conditions and higher nitrogen contents of precursors were required for obtaining high nitrogen concentrations in both N-CNFs and N-AMCMs. The synthetic method developed allowed us to prepare carbon supports with nitrogen contents to 8 wt %.  相似文献   

15.
Four nanoporous carbons obtained from different polymers: polypyrrole, polyvinylidene fluoride, sulfonated styrene–divinylbenzene resin, and phenol–formaldehyde resin, were investigated as potential adsorbents for carbon dioxide. CO2 adsorption isotherms measured at eight temperatures between 0 and 60 °C were used to study adsorption properties of these polymer-derived carbons, especially CO2 uptakes at ambient pressure and different temperatures, working capacity, and isosteric heat of adsorption. The specific surface areas and the volumes of micropores and ultramicropores estimated for these materials by using the density functional theory-based software for pore size analysis ranged from 840 to 1990 m2 g?1, from 0.22 to 1.47 cm3 g?1, and from 0.18 to 0.64 cm3 g?1, respectively. The observed differences in the nanoporosity of these carbons had a pronounced effect on the CO2 adsorption properties. The highest CO2 uptakes, 6.92 mmol g?1 (0 °C, 1 atm) and 1.89 mmol g?1 (60 °C, 1 atm), were obtained for the polypyrrole-derived activated carbon prepared through a single carbonization-KOH activation step. The working capacity for this adsorbent was estimated to be 3.70 mmol g?1. Depending on the adsorbent, the CO2 isosteric heats of adsorption varied from 32.9 to 16.3 kJ mol?1 in 0–2.5 mmol g?1 range. Overall, the carbons studied showed well-developed microporosity and exceptional CO2 adsorption, which make them viable candidates for CO2 capture, and for other adsorption and environmental-related applications.  相似文献   

16.
Hexaaluminates synthesized by precipitation and calcined at 700–1400°C have been characterized by atomic absorption spectroscopy, thermal analysis, X-ray powder diffraction, and adsorption methods. The heat treatment of the Mn-substituted and unsubstituted materials at 1100 and 1200°C yields a hexaaluminate phase. The specific surface area of the samples calcined at 1100°C is 20–49 m2/g. The texture of the samples calcined at 1000°C is characterized by a unimodal mesoporous pore size distribution with a mean pore diameter of 290 Å.  相似文献   

17.
We demonstrate a rational template carbonization method to produce nitrogen-containing nanoporous carbons at 800 °C, using 1, 10-phenanthroline (or benzimidazole) as carbon/nitrogen source and magnesium citrate as template. The mass ratio of 1, 10-phenanthroline (or benzimidazole) and magnesium citrate has exerted the vital role in the determination of pore structures and the resulting electrochemical performances. It reveals that the carbon-P:Mg-1:1 (obtained by heating 1, 10-phenanthroline and magnesium citrate at 800 °C with the mass ratio of 1:1) and carbon-B:Mg-1:1 (obtained by heating benzimidazole and magnesium citrate at 800 °C with the mass ratio of 1:1) samples both are amorphous, nitrogen-containing, and highly nanoporous in nature. The carbon-P:Mg-1:1 sample has a large BET surface area of 1,657.4 m2 g?1 and high pore volume of 1.83 cm3 g?1, and those of carbon-B:Mg-1:1 sample are of 1,105.4 m2 g?1 and 1.67 cm3 g?1, respectively. Based on a three-electrode system using a 6-mol L?1 KOH aqueous solution as electrolyte, the carbon-P:Mg-1:1 and carbon-B:Mg-1:1 samples can deliver large specific capacitances of 289.0 and 255.6 F g?1 at a current density of 0.5 A g?1. They can also exhibit high energy densities of 40.1 and 35.5 Wh kg?1 when designated the power density as 0.25 kW kg?1 as well as highly long-term cycling durabilities.  相似文献   

18.
The templated porous carbons were prepared from sucrose by one-pot method. In this method in which the pre-synthesis of the hard template is eliminated, the porous carbons were produced by organic-inorganic self-assembly of sucrose, tetraethyl ortosilicate (TEOS), Pluronic P123 and n-butanol in an acidic medium, and subsequent carbonization. The synthesis parameters such as sucrose amount, TEOS molar ratio and carbonization temperature were evaluated for describing their effects on the pore structures of the synthesized carbons. The prepared porous carbons were characterized by N2 adsorption, thermogravimetric analysis (TGA), Raman spectroscopy, X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM) techniques. The carbon dioxide adsorption uptakes of the obtained porous carbons were determined at 1 bar and 273 K. The templated carbon obtained with the lowest TEOS molar ratio exhibited the highest BET surface area of 1289 m2/g and micropore volume of 0.467 cm3/g, and showed the highest CO2 uptake of 2.28 mmol/g.  相似文献   

19.
Porous SiOC composites for efficient treatment of dye wastewater were prepared using polysiloxane preceramic polymer mixed with wood biomass by pyrolysis under Ar atmosphere. The influences of the pyrolysis temperature on the microstructure, pore feature and adsorption behavior were investigated. The composites contain the α-quartz, cristobalite, nanosized β-SiC and free carbon embedded in a SiOC matrix. The composite obtained at 1300 °C presents a high specific surface area up to 463 m2/g. The adsorption capacity is enhanced by increasing pyrolysis temperature. The adsorption for the removal of methylene blue on the composites follows the pseudo second-order kinetics, and the adsorption data can be described by the Langmuir and Freundlich adsorption isotherms very well. The composite at 1300 °C displays a maximum adsorption capacity up to 173.5 mg/g caused by the enhancement of specific surface area and the existence of sp2 carbons, resulting in many favorable adsorption sites and strong electrostatic attraction.  相似文献   

20.
A series of mesoporous carbons (MCs) have been obtained through organic–organic self-assembly method by using phloroglucinol–formaldehyde as carbon precursor and a reverse amphiphilic triblock copolymer as a template. Because of its acidity, the phloroglucinol was used as a catalyst itself. Results show that the pore size and structure of MCs were tailored by simply tuning the weight content of formaldehyde while keeping other reactants constant. A cylindrical mesostructure was obtained when the weight content was 1.0, 1.2 and 1.4. Further increasing the weight content to 1.6 or 2.0, a three-dimensional cage-like mesostructure was obtained. Specific surface area and pore volume up to 485 m2/g and 0.78 cm3/g can be reached, respectively. In addition, the pore size can be tuned in the range of 4.9–14.8 nm by changing the content of formaldehyde.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号