首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The electro‐osmotic flow, a significant factor in capillary electrophoretic separations, is very sensitive to small changes in structure and surface roughness of the inner surface of fused silica capillary. Besides a number of negative effects, the electro‐osmotic flow can also have a positive effect on the separation. An example could be fused silica capillaries with homogenous surface roughness along their entire separation length as produced by etching with supercritical water. Different strains of methicillin‐resistant and methicillin‐susceptible Staphylococcus aureus were separated on that type of capillaries. In the present study, fused‐silica capillaries with a gradient of surface roughness were prepared and their basic behavior was studied in capillary zone electrophoresis with UV‐visible detection. First the influence of the electro‐osmotic flow on the peak shape of a marker of electro‐osmotic flow, thiourea, has been discussed. An antifungal agent, hydrophobic amphotericin B, and a protein marker, albumin, have been used as model analytes. A significant narrowing of the detected zones of the examined analytes was achieved in supercritical‐water‐treated capillaries as compared to the electrophoretic separation in smooth capillaries. Minimum detectable amounts of 5 ng/mL amphotericin B and 5 μg/mL albumin were reached with this method.  相似文献   

2.
Exact direct calculations of adsorption of model argon atoms and nitrogen molecules in cylindrical proes of a MSM-41-type material were performed with the use of the fragment method over a wide temperature range. It was demonstrated that, in pores with a diameter of about 2 nm, no phase transitions occur, and, therefore, no hysteresis loops are observed. Topological and geometric criteria of the quasi-one-dimensional behavior of the adsorbate in pores with diameters of from 2 to 10 nm were introduced and examined. The geometric criteria predict the appearance of a hysteresis loop for pores with a diameter of 4 nm, in agreement with the available experimental data.  相似文献   

3.
A direct method of surface silyl modification and simultaneous surfactant removal of mesoporous silica is investigated in its physicochemical details. Twelve different silanes of various functionalities are studied. The method employs an alcohol solution of silanes to allow the simultaneous surfactant/silyl exchange process, which results in a more uniform monolayer coverage of the surface and a higher amount of surface attachments of silane. We vary the solution concentration of silanes to study the effect on loadings. It is found that the variation of the surface loading of the silyl group follows a Langmuir adsorption model closely. The method gives one a well-controlled monolayer coverage of the surface. The loadings are determined by the exchange equilibrium. Fittings of the loading data to Langmuir adsorption isotherms give one the adsorption equilibrium constants and maximum surface loadings. We categorize the silanes into three different groups according to the values of the equilibrium constants and discuss them with respect to molecular structures. We also report on the extensive characterizations of the surface-functionalized mesoporous materials, such as nitrogen adsorptions, X-ray diffraction, 29Si magic-angle spinning NMR, 13C magic-angle spinning NMR, and IR spectroscopy. The method provides one with a convenient and highly controllable approach to the surface functionalization of mesoporous silica.  相似文献   

4.
2-(1环-己烯基)环己酮是一种植物防腐杀菌剂,作为制备柑桔类水果的保鲜剂、分散染料染色的载体物质邻苯基苯酚(Ortho-phenylphenol,OPP)的原料而备受重视。其与环己叉基环己酮互为同分异构体,均由环己酮A ldol缩合反应合成,该过程是包括醇醛缩合、脱水在内的亲核加成-消除反应,  相似文献   

5.
Capillary forces between surfaces with nanoscale roughness   总被引:4,自引:0,他引:4  
The flow and adhesion behavior of fine powders (approx. less than 10 microm) is significantly affected by the magnitude of attractive interparticle forces. Hence, the relative humidity and magnitude of capillary forces are critical parameters in the processing of these materials. In this investigation, approximate theoretical formulae are developed to predict the magnitude and onset of capillary adhesion between a smooth adhering particle and a surface with roughness on the nanometer scale. Experimental adhesion values between a variety of surfaces are measured via atomic force microscopy and are found to validate theoretical predictions.  相似文献   

6.
Surface modification offers a great opportunity to adjust both the pore diameter and surface properties of MCM-41 type organic–inorganic hybrid materials which result in materials of improved hydrothermal and mechanical stability. Therefore, MCM-41 silica, surface modified with organic ligands, are promising systems with engineered properties and attractive for advanced applications. In the present study, after optimization of the reaction conditions highly ordered MCM-41 silica spheres with uniform mesopores were prepared by the pseudomorphic transformation route. The effect of functionality and alkyl chain length of the alkyl ligands during surface modification was probed by using butyl and octylsilanes with two different functionalities. Due to steric hindrance, the longer chains are assumed to bind only on the outer silica surface and near the entrance of the pores, while the shorter chains are also able to bind to the interior mesopore walls. The resulting materials were comprehensively characterized before and after surface modification using nitrogen sorption techniques, XRD, SEM, solid-state NMR spectroscopy and FTIR spectroscopy. From chromatographic test measurements it was found that the separation power primarily depends on surface coverage and alkyl chain length. On the basis of the present data, surface modified mesoporous silica of MCM-41 type are very promising candidates for future chromatographic applications.  相似文献   

7.
SBA-15 was modified with heterocyclic silanes for synthesis bi-SBA-15 by using ring-opening click reaction in a short time under mild conditions. The prepared bi-SBA-15 can directly remove As(III) and As(V) without preoxidizing As(III) to As(V).  相似文献   

8.
Here, we report the design of a hybrid inorganic/organic mesoporous material through simultaneous pore engineering and hydrophobic surface modification of the intramesochannels to improve the uptake of superparamagnetic maghemite nanocrystals via impregnation techniques. The mesoporous material of the SBA-15 type was functionalized in situ with thiol organo-siloxane groups. Restricting the addition of the thiol organo-siloxane to 2 mol % yielded an inorganic/organic hybrid material characterized by large pores and a well-ordered hexagonal p6mm mesophase. The hydrophobic surface modification promoted the incorporation of 7.5 nm maghemite (gamma-Fe2O3) nanocrystals, prepared through temperature-controlled decomposition of iron pentacarbonyl in organic solvents. The hydrophobic, oleic acid capped superparamagnetic maghemite nanocrystals were incorporated into the porous network via wet impregnation from organic suspensions. Combining diffraction, microscopy, and adsorption data confirmed the uptake of the nanocrystals within the intramesochannels of the silica host. Magnetization dependencies on magnetic field at different temperatures show a constriction in the loop around the origin, which indicates immobilization of maghemite nanocrystals inside the thiol-functionalized silica host.  相似文献   

9.
Different kinds of porous organic polymers (POPs) bearing 4,4‐difluoro‐4‐bora‐3a,4a‐diaza‐s‐indacene (BDP) fluorophores have been developed to generate singlet oxygen upon light illumination. Herein, four imine‐linked POPs were prepared by copolymerization of amine and aldehyde with different ratios of di‐aldehyde A1 and A2. The POPs were investigated by a combination of techniques such as solid 13C NMR, FTIR, and nitrogen absorption–desorption isotherms and electronic microscopy. The results demonstrated that these POPs were prone to form hierarchical porous architectures. Scanning electron microscopy and transmission electron microscopy images revealed that the spherical morphologies showed different roughness, that is, BDP‐POPs with more BDP aldehyde A2 presented rougher surface. Finally, these POPs were used to generate singlet oxygen (1O2) monitored by 1,3‐diphenylisobenzofuran and bioimaging in HeLa cells. Our results indicated that the ability to generate 1O2 is dependent on the amount of BDP. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 319–327  相似文献   

10.
11.
Silica containing protonated 3-aminopropyl groups has been synthesized by a template method using Pluronic 123 as a surfactant in an acidic medium at a hydrochloric acid concentration of 1.72 M. The X-ray diffraction data have indicated that the obtained sample has a highly ordered hexagonal structure, which agrees with the large specific surface area and sorption pore volume (S sp = 880 m2/g, V s = 1.28 cm3/g) typical of SBA-15 materials. However, transmission electron microscopy data show that this material contains two phases, with one of them being similar to SBA-15 mesoporous silica and the other belonging to socalled “honeycomb foams.” An ion-exchange reaction has been employed to immobilize phosphomolybdic acid H3[P(Mo3O10)4] on the pore surface, and the fact of immobilization has been confirmed by IR and TGA data. This functionalization significantly reduces the S sp and V s values of the sample but has no effect on isotherm pattern, thereby attesting to retaining the silica structure after the modification.  相似文献   

12.
New amino-functionalized monodispersed mesoporous silica spheres (MMSS) were synthesized directly by co-condensation of 3-aminopropyltrimethoxysilane (AP-TMS), [3-(2-aminoethylamino)propyl]trimethoxysilane (AEAP-TMS) or 3-[2-(2-aminoethylamino)ethylamino]propyltrimethoxysilane (AEAEAP-TMS) with tetramethoxysilane. By changing the methanol ratio or adding extra silica source, amino-functionalized MMSS with different particle diameter (310–780 nm) and the same mesopore size were successfully synthesized. TEM observations revealed that the mesopores were aligned radially from the center towards the outside of the spheres even in the amino-functionalized MMSS. The effect of particle diameter on base catalytic activity was investigated using the amino-functionalized MMSS. In addition, the amino-functionalized MMSS were found to be excellent base catalysts in the nitroaldol condensation reactions. The effectiveness factor was evaluated to be 0.8–0.82 and improved substantially compared with MMSS prepared by grafting method.  相似文献   

13.
The adsorption of a cysteine enzyme, on mesoporous silica with high specific surface area synthesized by the sol-gel method, was studied in a heat flow calorimeter, to determine the energy involved in the adsorption process of the protein. The adsorption was carried out at a constant temperature of 30°C to avoid the denaturation of the enzyme. The observed results indicate that the obtained biomaterials (silica-enzyme) have possibilities for their application in several biotechnology processes. The heat of papain adsorption and the solid-enzyme (SiO2-Papain) interactions at different pH are presented.  相似文献   

14.
A series of bifunctionalized mesoporous silica nanosphere-based (MSN) heterogeneous catalysts for the nitroaldol (Henry) reaction have been synthesized. A common 3-[2-(2-aminoethylamino)ethylamino]propyl (AEP) primary group and three different secondary groups, ureidopropyl (UDP), mercaptopropyl (MP), and allyl (AL) functionalities, were incorporated to these mesoporous silica materials by introducing equal amounts of AEP-trimethoxysilane with UDP-, MP-, or AL-trialkoxysilane precursors to our previously reported co-condensation reaction. Structures and relative concentrations of the functional groups were detailed by solid-state NMR and other spectroscopic techniques. The AEP group served as a catalyst, and the other secondary groups provided different noncovalent interactions to reactants and thereby controlled the reaction selectivity. By varying the secondary group in these bifunctionalized MSN catalysts, we investigated the selectivity of a nitroaldol reaction of two competing benzaldehydes reacting with nitromethane by measuring the molar ratio of the nitroalkene products. The selectivity of the bifunctionalized MSN catalysts could be systematically tuned simply by varying the physicochemical properties of the pore surface-bound secondary groups, i.e., polarity and hydrophobicity.  相似文献   

15.
A density-functional study of capillary condensation of fluids of short-chain molecules confined to slitlike pores is presented. The molecules are modeled as freely jointed tangent spherical segments with a hard core and with short-range attractive interaction between all the segments. We investigate how the critical parameters of capillary condensation of the fluid change when the pore width decreases and eventually becomes smaller than the nominal linear dimension of the single-chain molecule. We find that the dependence of critical parameters for a fluid of dimers and of tetramers on pore width is similar to that of the monomer fluid. On the other hand, for a fluid of chains consisting of a larger number of segments we observe an inversion effect. Namely, the critical temperature of capillary condensation decreases with increasing pore width for a certain interval of values of the pore width. This anomalous behavior is also influenced by the interaction between molecules and pore walls. We attribute this behavior to the effect of conformational changes of molecules upon confinement.  相似文献   

16.
17.
2D double-quantum (1)H-(1)H NMR unambiguously shows that the "isolated" ≡Si-OH surface silanols of dehydroxylated SBA-15 are converted upon treatment with ammonia into single silylamine surface site ≡Si-NH(2). The "gem" di-silanols (=Si(OH)(2)) remain intact. Treatment using HMDS produces (=Si(OSiMe(3))(2)) but leaves ≡Si-NH(2) untouched. The resulting surface is hydrophobic and stable.  相似文献   

18.
The paper reports a novel approach to achieve self-healing surface hydrophobicity. Mesoporous silica is used as the reservoir for hydrophobic molecules, i.e., octadecylamine (ODA), that can release and refresh the surface hydrophobicity consecutively. A polymdopamine layer is used to further encapsulate silica-ODA, providing a reactive layer, governing release of the underlying ODA, and improving the dispersivity of silica nanoparticles in bulk resin. The approach arrives at self-healing (super)hydrophobicity without using any fluoro-containing compounds.  相似文献   

19.
Thermal stability on a mixture of triblock polymer (P123) and fluorocarbon surfactant (FC-4) in acidic media for synthesis of ordered mesoporous materials has been carefully investigated by NMR spectroscopy at various treated temperatures (RT-180 degrees C) and the templating mechanism of the mixture on high-temperature synthesis has been proposed. Accordingly, we have designed fluorocarbon-free templates for syntheses of ordered mesoporous silica materials at high temperatures. As expected, ordered mesoporous silica materials with high degree of silica condensation are synthesized at high temperatures from these designed templates.  相似文献   

20.
Lipase from Pseudomonas cepacia (PCL) was successfully immobilized into siliceous mesocellular foams (MCFs) with various hydrophobic/hydrophilic surfaces. The catalytic performances of immobilized PCL were investigated using the transesterification reaction and hydrolytic reaction as model reactions. The specific activity of immobilized PCL greatly increased with enhanced surface hydrophobicity of MCFs, mainly because of lipase activation via hydrophobic interaction between alkyl groups in MCFs and the surface loop (so-called "lid") of PCL. Conformational changes of immobilized PCL were further investigated using time-resolved fluorescence spectroscopy with Trp as an intrinsic probe. When the immobilized PCL was suspended in phosphate buffer, short-lived τ(1) shortened and the fractional contribution of τ(1) significantly increased with the increasing level of surface hydrophobicity of MCFs. These results revealed that Trp(s) of the immobilized PCL were surrounded by a hydrophilic microenvironment because of the fact that the opened "lid" permitted the diffusion of water to the active site cleft. However, for the immobilized PCL suspended in n-hexane, long-lived τ(3) increased with the increase of surface hydrophobicity of MCFs. The reduced interaction between Trp(s) and the surrounding protein matrix was due to intercalation of n-hexane into the active site cleft when the lipase was in open conformation. The above results demonstrated that PCL immobilized into MCF with hydrophobic surfaces were in an activated open conformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号