首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mean values of the characteristic energy of C6H6 adsorption in large micropores were calculated from the adsorption isotherms of benzene vapor on carbon blacks. The supermicropores are characterized by the significant dispersion of the adsorption potential resulted from the pore-size distribution, which imparts the polymolecular character to adsorption. The effect of enhancement of the characteristic energy of adsorption was analyzed, which was caused by the overlap of the force fields of the opposite pore walls and the reduction of the adsorption film surface with micropore volume filling. The both factors are comparable by magnitude and depend on the micropore sizes.  相似文献   

2.
Changes that occur in the surface properties and porous structure of montmorillonite when sodium ions are replaced with polyhydroxyaluminum ions are studied. It is established that thermal evacuation significantly affects the adsorption and energy properties of polyhydroxyaluminum montmorillonite (PHAM). The dependences of the differential isosteric heats of adsorption and desorption on the amount of adsorbed substance are determined from data on a series of isosteres for the sorption of benzene and toluene on dehydrated PHAMs, where the curves of the heats of sorption of C6H6 and C7H8 are of an extreme character. It is concluded that the occurrence of maxima is determined by the interaction between molecules of adsorbates and active centers (and with one another) due to packing upon the filling of the volumes of slittype micropores.  相似文献   

3.
A SAXS/WAXS apparatus with the aid of a specially designed sample cell capable for performing both SAXS and WAXS experiments was used for adsorption studies in nanoporous materials. The applicability of the instrument for structural investigations and its ability for adsorption experiments because of the advanced sample environment were demonstrated by carrying out in situ SAXS measurements during gas physisorption. SAXS profiles of ordered mesoporous silica were measured at selected equilibrium points alongside a dibromomethane (CH2Br2) adsorption isotherm at 293 K. SBA-15 was the adsorbent of choice because it consists of a regular 2D hexagonal array of cylindrical mesopores that gives rise to Bragg reflections in the small-angle regime. CH2Br2 was selected as a contrast-matching fluid because it has almost the same electron density as silica. We obtained high-quality data comparable to those resulting from experiments performed in synchrotron light sources which produce intense beams of x-rays and support advanced instrumentation for high-resolution diffraction and SAXS studies. The Bragg peaks of the pore lattice are clearly visible for the evacuated sample and at the early stages of the adsorption process. The intensity decrease and the elimination of the Bragg peaks for the saturated sample suggest that an almost perfect contrast matching was achieved. A model has been used for monitoring the fluid condensation and evaporation regime in SBA-15 by taking into account both the Bragg scattering and the diffuse scattering for spatially random pore filling. The results show the absence of spatial correlations between filled pores suggesting random pore filling.  相似文献   

4.
The differential isosteric heat of the adsorption of n-hexane and n-heptane vapors on dehydrated polyhydroxyaluminum montmorillonite was determined. Using the temperature dependence of the parameters of the adsorption equilibrium, it was established that substituting sodium ions for polyhydroxyaluminum cations leads to an increase in the volume of micropores and the adsorption heat of hydrocarbons, and the curves of the adsorption heats of C6H14 and C7H16 are of an extreme nature. The appearance of the maxima is associated with the interaction between and among the adsorbate molecules and active centers, due to consolidation in the process of filling micropore volumes.  相似文献   

5.
Commercial ultrafiltration membranes have proliferated globally for water treatment. However, their pore sizes are too large to sieve gases. Conjugated microporous polymers (CMPs) feature well‐developed microporosity yet are difficult to be fabricated into membranes. Herein, we report a strategy to prepare molecular‐sieving membranes by partitioning the mesoscopic channels in water ultrafiltration membrane (PSU) into ultra‐micropores by space‐confined polymerization of multi‐functionalized rigid building units. Nine CMP@PSU membranes were obtained, and their separation performance for H2/CO2, H2/N2, and H2/CH4 pairs surpass the Robeson upper bound and rival against the best of those reported membranes. Furthermore, highly crosslinked skeletons inside the channels result in the structural robustness and transfer into the excellent aging resistance of the CMP@PSU. This strategy may shed light on the design and fabrication of high‐performance polymeric gas separation membranes.  相似文献   

6.
With a purpose of extending the application of β-cyclodextrin (β-CD) for gas adsorption, this paper aims to reveal the pore formation mechanism of a promising adsorbent for CO2 capture which was derived from the structural remodeling of β-CD by thermal activation. The pore structure and performance of the adsorbent were characterized by means of SEM, BET and CO2 adsorption. Then, the thermochemical characteristics during pore formation were systematically investigated by means of TG-DSC, in situ TG-FTIR/FTIR, in situ TG-MS/MS, EDS, XPS and DFT. The results show that the derived adsorbent exhibits an excellent porous structure for CO2 capture accompanied by an adsorption capacity of 4.2 mmol/g at 0 °C and 100 kPa. The porous structure is obtained by the structural remodeling such as dehydration polymerization with the prior locations such as hydroxyl bonded to C6 and ring-opening polymerization with the main locations (C4, C1, C5), accompanied by the release of those small molecules such as H2O, CO2 and C3H4. A large amount of new fine pores is formed at the third and fourth stage of the four-stage activation process. Particularly, more micropores are created at the fourth stage. This revealed that pore formation mechanism is beneficial to structural design of further thermal-treated graft/functionalization polymer derived from β-CD, potentially applicable for gas adsorption such as CO2 capture.  相似文献   

7.
In studying the surface and adsorption properties of Al2O3 and Ni(12%)/Al2O3 with respect to C6H6 and C6H5Cl, it is found that adsorbate-adsorbent interaction is stronger than adsorbate-adsorbate interaction. It is shown that the calculated isosteric heats of adsorption vary in a range of 61 to 45 kJ/mol depending on adsorption magnitude; for Ni(12%)/γ-Al2O3, as in the case of γ-Al2O3, the heat of adsorption of chlorobenzene is higher at low degrees of filling than that of benzene. According to density functional theory quantum-chemical calculations of the structures of complexes (NinC6H5Cl) z and (Ni n C6H6) z (n = 1, 4; z = ?1, 0, +1), a nickel atom can penetrate into C6H5Cl along the C-Cl bond. It is concluded that a negative charge on nickel contributes to the efficient activation of the C-Cl bond and to an increase in the rate of desorption of benzene, a key step in the hydrodechlorination of chlorobenzene.  相似文献   

8.
This study reports 6FDA:BPDA‐DAM polyimide‐derived hollow fiber carbon molecular‐sieve (CMS) membranes for hydrogen and ethylene separation. Since H2/C2H4 selectivity is the lowest among H2/(C1‐C3) hydrocarbons, an optimized CMS fiber for this gas pair is useful for removing hydrogen from all‐cracked gas mixtures. A process we term hyperaging provides highly selective CMS fiber membranes by tuning CMS ultramicropores to favor H2 over larger molecules to give a H2/C2H4 selectivity of over 250. Hyperaging conditions and a hyperaging mechanism are discussed in terms of an expedited physical aging process, which is largely controlled by the hyperaging temperature. For the specific CMS material considered here, a hyperaging temperature beyond 90 °C but less than 250 °C works best. Hyperaging also stabilizes CMS materials against physical aging and stabilizes the performance of H2 separation over extended periods. This work opens a door in the development of CMS materials for the separation of small molecules from large molecules.  相似文献   

9.
In this study, the effect of coal micropores on the adsorption properties, especially the Langmuir pressure (P L ), was investigated by testing 11 coal samples from Northern China. The adsorption of CO2 at 273 K was utilized to analyze the pore size distribution. The results of these coals show that micropore volume and micropore surface area are the major factors affecting the Langmuir volume (V L ) but have weaker effects on P L . Micropore filling theory considers that some smaller micropores with an obvious overlapping adsorption force cause volume filling adsorption. These micropores firstly reach saturated adsorption, controlling the adsorption volume at the low-pressure stage and thus have a great effect on P L . Four times the methane molecular diameter, 1.5 nm, was assumed as the critical pore size with obvious overlapping adsorption force. The relationship between P L and the proportion of the pore volume below 1.5 nm to the micropore volume was investigated, and it was found that the higher the volume proportion of these small micropores was, the smaller the P L was, though two data points deviated from this trend. The reason for the anomalous coal samples could be the deviation from the assumed critical pore size of 1.5 nm for volume filling and the effects of the various micropore surface properties, which await further study. The micropore surface increases with increasing coal rank, as does V L . The proportion of pore volume below 1.5 nm increases with coal rank, and P L reverses. However, these relationships are discrete.  相似文献   

10.
Two C2H6-selective metal-organic framework (MOF) adsorbents with ultrahigh stability, high surface areas, and suitable pore size have been designed and synthesized for one-step separation of ethane/ethylene (C2H6/C2H4) under humid conditions to produce polymer-grade pure C2H4. Experimental results reveal that these two MOFs not only adsorb a high amount of C2H6 but also display good C2H6/C2H4 selectivity verified by fixed bed column breakthrough experiments. Most importantly, the good water stability and hydrophobic pore environments make these two MOFs capable of efficiently separating C2H6/C2H4 under humid conditions, exhibiting the benchmark performance among all reported adsorbents for separation of C2H6/C2H4 under humid conditions. Moreover, the affinity sites and their static adsorption energies were successfully revealed by single crystal data and computation studies. Adsorbents described in this work can be used to address major chemical industrial challenges.  相似文献   

11.
Hydrogen-bonded organic frameworks (HOFs) show great potential in energy-saving C2H6/C2H4 separation, but there are few examples of one-step acquisition of C2H4 from C2H6/C2H4 because it is still difficult to achieve the reverse-order adsorption of C2H6 and C2H4. In this work, we boost the C2H6/C2H4 separation performance in two graphene-sheet-like HOFs by tuning pore polarization. Upon heating, an in situ solid phase transformation can be observed from HOF-NBDA(DMA) (DMA=dimethylamine cation) to HOF-NBDA , accompanied with transformation of the electronegative skeleton into neutral one. As a result, the pore surface of HOF-NBDA has become nonpolar, which is beneficial to selectively adsorbing C2H6. The difference in the capacities for C2H6 and C2H4 is 23.4 cm3 g−1 for HOF-NBDA , and the C2H6/C2H4 uptake ratio is 136 %, which are much higher than those for HOF-NBDA(DMA) (5.0 cm3 g−1 and 108 % respectively). Practical breakthrough experiments demonstrate HOF-NBDA could produce polymer-grade C2H4 from C2H6/C2H4 (1/99, v/v) mixture with a high productivity of 29.2 L kg−1 at 298 K, which is about five times as high as HOF-NBDA(DMA) (5.4 L kg−1). In addition, in situ breakthrough experiments and theoretical calculations indicate the pore surface of HOF-NBDA is beneficial to preferentially capture C2H6 and thus boosts selective separation of C2H6/C2H4.  相似文献   

12.
This work presents an attempt at correlating the available permeability/selectivity literature data for hollow fibers and flat membranes. Therefore, this paper gathers the information pertaining to membrane materials for which membrane properties of flat membranes and hollow fibers have both been reported. An overview of the relations between selectivity and permeance of hollow fiber membranes for various gas pairs (O2/N2, CO2/CH4, CO2/N2, H2/N2, H2/CO2, H2/CH4 and He/N2) is presented first. The upper bound lines are the ones proposed by Robeson, which were calculated by assuming a one-micron-thick skin layer as proposed by Robeson in 2008. From the results obtained, a relation between the selectivity ratio in both kinds of membranes (αHf) and skin layer thickness (l) calculated from flat membranes and hollow fibers gas permeation data for these pairs of gases is also presented. The skin layer thicknesses measured using seven different experimental techniques for six commercial membranes are compared. The influences of spinning parameters on the morphology and performance of hollow fiber membrane gas separation are discussed. Finally, an analysis is made of the reasons why the dense skin layer thicknesses of a hollow fiber calculated using permeance and permeability data vary for different gases and also differ from direct experimental measurements.  相似文献   

13.
The self-diffusion coefficients of water in active carbon (AC) having relatively wide micropores increase in direct proportion to the degree of filling. The self-diffusion coefficients D of adsorbed C6H6, C6F6, C6H12, and H2O molecules at 298 K do not depend on the size of the molecules and are larger, the greater the mobility of the molecules in the free liquids. The self-diffusion activation energy of the adsorbed molecules varies in the order: H2O>C6F6> C6H12 C6H14. C6H14. For H2O and C6H6 the activation energy increases as the characteristic size of the micropores of the AC increases.Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 9, pp. 1949–1951, September, 1989.  相似文献   

14.
Mass-analysed ion kinetic energy spectra for collisional activation (CA) of [C6H6]+˙ formed via electron capture by [C6H6]2+ ions in collision with neutral benzene molecules have been compared for the C6H6 isomers benzene, 1,5-hexadiyne and 2,4-hexadiyne. Comparisons of fragment abundance and total CA fragment yields were also made for [C6H6]+˙ ions generated by electron ionization (EI). CA conditions of ion velocity and collision gas pressure were identical in these comparisons. In general the fragment abundance patterns for the ions formed by charge exchange were very similar to those for singly charged benzene ions generated by EI. However, significant variations in CA fragment yield (the ratio of the total CA fragment ion abundance to the abundance of the incident unfragmented ions) were observed. It is not clear from the results whether these variations reflect structurally different ions or ions of different internal energies. The CA spectra of [C6H6]+˙ ions derived from charge exchange reactions between the benzene dication and the target gases He, Ne, Ar, Kr and Xe have also been recorded and, once again, very similar fragment abundance patterns were observed along with large variations in total CA fragment yields. Charge exchange efficiency measurements are reported for reactions between the benzene dication and the targets He, Ne, Ar, Kr, Xe and C6H6 (benzene) and also for the doubly charged ions derived from the linear C6H6 isomers. In the latter case Xe and benzene targets were used. The energetics and efficiency measurements for the former reactions suggest that for targets such as He and Ne the processes probably involve excited states of the doubly charged ions. The efficiencies measured for the latter reactions were distinctly different for the three C6H6 isomers and may indicate a strong dependence of charge exchange cross-section on doubly charged ion structure.  相似文献   

15.
Matrimid/polysulfone (PSf) dual-layer hollow fiber membranes were fabricated by using co-extrusion and dry-jet wet-spinning phase-inversion techniques. The effects of the spinning dope composition, spinneret dimension, spinneret temperature and the air gap distance on the hollow fiber membranes separation performance were studied. Aging phenomenon was also studied. After coated by 3 wt% silicon solution, the hollow fiber membranes have an O2/N2 selectivity of 7.55 at 25 °C, 506.625 kPa which exceeds the intrinsic value of Matrimid. The membranes have an O2 permeance of 9.36 GPU with an apparent dense-layer thickness of 1421 Å calculated from the O2 permeability. SEM images show the high porosity underneath the dense skin. It indicates that non-solvent addition is not necessary in the inner spinning dope to induce the macroviod formation. The binodals of the Matrimid/solvent/H2O and PSf/solvent/H2O indicate that the composition of the spinning dope plays an important role in the structure and the gas separation performance of the dual-layer hollow fiber membranes. The delayed demixing of the inner spinning dope may fabricate low resistance support layers in the dual-layer hollow fiber membranes.  相似文献   

16.
We report that 6FDA-2,6-DAT polyimide can be used to fabricate hollow fiber membranes with excellent performances for CO2/CH4 separation. In order to simplify the hollow fiber fabrication process and verify the feasibility of 6FDA-2,6-DAT hollow fiber membranes for CO2/CH4 separation, a new one-polymer and one-solvent spinning system (6FDA-2,6-DAT/N-methyl-pyrrolidone (NMP)) with much simpler processing conditions has been developed and the separation performance of newly developed 6FDA-2,6-DAT hollow fiber membranes has been further studied under the pure and mixed gas systems.Experimental results reveal that 6FDA-2,6-DAT asymmetric composite hollow fiber membranes have a strong tendency to be plasticized by CO2 and suffer severely physical aging with an initial CO2 permeance of 300 GPU drifting to 76 GPU at the steady state. However, the 6FDA-2,6-DAT asymmetric composite hollow fibers still present impressive ultimate stabilized performance with a CO2/CH4 selectivity of 40 and a CO2 permeance of 59 GPU under mixed gas tests. These results manifest that 6FDA-2,6-DAT polyimide is one of promising membrane material candidates for CO2/CH4 separation application.  相似文献   

17.
《Supramolecular Science》1998,5(3-4):267-273
Interaction of a molecule with micropore walls strongly depends on the micropore width. Molecules confined in the micropore tend to form an intermolecular structure inherent to each molecule/pore system in order to lower the whole molecular energy. Supercritical NO is adsorbed in micropores of zolite or activated carbon fiber in the form of a dimer at 303 K. The NO dimerization varies with the micropore width. CCl4 molecules only in pore of pore width =1.0 nm at 303 K form a plastic crystalline structure which is observed at 246–250 K in the bulk phase. H2O molecules are associated with each other to form an ordered assembly in carbon micropores at 303 K; the smaller the pore width, the more ordered the assembly structure. The presence of preadsorbed H2O noticeably enhances adsorption of supercritical CH4 in carbon micropores at 303 K due to methane nanohydrate formation, which has an optimum pore width of 1 nm.  相似文献   

18.
The effect of organic ligands on the separation performance of Zr based metal–organic framework (Zr‐MOF) membranes was investigated. A series of Zr‐MOF membranes with different ligand chemistry and functionality were synthesized by an in situ solvothermal method and a coordination modulation technique. The thin supported MOF layers (ca. 1 μm) showed the crystallographic orientation and pore structure of original MOF structures. The MOF membranes show excellent selectivity towards hydrogen owing to the molecular sieving effect when the bulkier linkers were used. The molecular simulation confirmed that the constricted pore apertures of the Zr‐MOFs which were formed by the additional benzene rings lead to the decrease in the diffusivity of larger penetrants while hydrogen was not remarkably affected. The gas mixture separation factors of the MOF membranes reached to H2/CO2=26, H2/N2=13, H2/CH4=11.  相似文献   

19.
Metal–organic framework (MOF) glass is an easy to process and self-supported amorphous material that is suitable for fabricating gas separation membranes. However, MOF glasses, such as ZIF-62 and ZIF-4 have low porosity, which makes it difficult to obtain membranes with high permeance. Here, a self-supported MOF crystal–glass composite (CGC) membrane was prepared by melt quenching a mixture of ZIF-62 as the membrane matrix and ZIF-8 as the filler. The conversion of ZIF-62 from crystal to glass and the simultaneous partial melting of ZIF-8 facilitated by the melt state of ZIF-62 make the CGC membrane monolithic, eliminating non-selective grain boundaries and improving selectivity. The thickness of CGC membrane can be adjusted to fabricate a membrane without the need of a support substrate. CGC membranes exhibit a C2H6 permeance of 41 569 gas permeation units (GPU) and a C2H6/C2H4 selectivity of 7.16. The CGC membrane has abundant pores from the glassy state of ZIF-62 and the crystalline ZIF-8, which enables high gas permeance. ZIF-8 has preferential adsorption for C2H6 and promotes C2H6 transport in the membrane, and thus the GCG membrane exhibits ultrahigh C2H6 permeance and good C2H6/C2H4 selectivity.  相似文献   

20.
Adsorptive separation of C2H6 from C2H4 by adsorbents is an energy-efficient and promising method to boost the polymer grades C2H4 production. However, that C2H6 and C2H4 display very similar physical properties, making their separation extremely challenging. In this work, by regulating the pore environment in a family of chitosan-based carbon materials (C-CTS-1, C-CTS-2, C-CTS-4, and C-CTS-6)- we target ultrahigh C2H6 uptake and C2H6/C2H4 separation, which exceeds most benchmark carbon materials. Explicitly, the C2H6 uptake of C-CTS-2 (166 cm3/g at 100 kPa and 298 K) has the second-highest adsorption capacity among all the porous materials. In addition, C-CTS-2 gives C2H6/C2H4 selectivity of 1.75 toward a 1:15 mixture of C2H6/C2H4. Notably, the adsorption enthalpies for C2H6 in C-CTS-2 are low (21.3 kJ/mol), which will facilitate regeneration in mild conditions. Furthermore, C2H6/C2H4 separation performance was confirmed by binary breakthrough experiments. Under different ethane/ethylene ratios, C-CTS-X extracts a low ethane concentration from an ethane/ethylene mixture and produces high-purity C2H4 in one step. Spectroscopic measurement and diffraction analysis provide critical insight into the adsorption/separation mechanism. The nitrogen functional groups on the surface play a vital role in improving C2H6/C2H4 selectivity, and the adsorption capacities depend on the pore size and micropore volume. Moreover, these robust porous materials exhibit outstanding stability (up to 800 °C) and can be easily prepared on a large scale (kg) at a low cost (~$26 per kg), which is very significant for potential industrial applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号