首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The structural changes and the mechanism of benzene adsorption on microporous carbon hollow fiber membranes with different surface and pore network properties have been investigated by in situ small-angle X-ray scattering (SAXS) and benzene adsorption. Benzene adsorption measurements have been carried out in situ with SAXS alongside an adsorption/desorption isotherm cycle at 293 K with the aid of a specially constructed adsorption sample cell. In addition low-pressure C6H6 and high-pressure CO2, CH4 and N2 adsorption isotherms have been performed. Two carbon hollow fiber membranes, both prepared by controlled pyrolysis procedures of polyimide membrane precursor, were under study. During benzene adsorption the intensity of the SAXS curves changes in a way that depends on how the pores are filled and the contrast fluctuations occur. The SAXS data have been modeled by evaluating the form factor of lamellar micropores upon filling with C6H6. The existence of ultra micropores within the surrounding matrix was also taken into account. The results suggest that the arrangement of the ultra micropores on the non-activated membrane is in such a way that the access of benzene to the micropores is restricted, resulting in an incomplete filling. On the other hand, the activation process generates a more accessible pore network where the micropores are completely filled.  相似文献   

2.
合成了一系列具有不同孔结构与性质的有序介孔二氧化硅材料SBA-15、MCM-41、SBA-16、KIT-6, 同时通过改变水热温度制备了不同孔径大小的SBA-15, 并利用小角X射线散射、透射电镜、扫描电镜和氮气吸附-脱附等手段, 对其介孔结构进行了表征. 以正丁醛为探针分子, 考察了其对有机醛的吸附, 并与Y-沸石的吸附性能做了对比. 结果表明, 材料的介孔比表面积与其对正丁醛的吸附量成正比, 吸附等温线符合Langmuir 模型, 属于单层吸附, 具有最大介孔比表面积的MCM-41对正丁醛的吸附量最大(484 mg·g-1). 最后将SBA-15添加到卷烟滤嘴中, 实验结果表明, SBA-15能显著降低卷烟烟气中巴豆醛的释放量.  相似文献   

3.
A short-time synthesis of SBA-15 is reported by using two different silica sources, sodium metasilicate (Na2SiO3(9)H2O) and tetraethyl orthosilicate (TEOS). The SBA-15 samples obtained from both silica sources were highly ordered as evidenced by SAXS spectra showing five reflection peaks characteristic for p6mm symmetry group. While the surface areas of these samples were similar, the pore volume of the sample prepared from TEOS was slightly larger than that from sodium metasilicate. However, the latter exhibited higher microporosity and thicker pore walls. It was shown that a significant reduction of time of the self-assembly step from 24 to 2 h had no detrimental influence on the quality of SBA-15 materials.  相似文献   

4.
合成了一系列具有不同孔结构与性质的有序介孔二氧化硅材料SBA-15、MCM-41、SBA-16、KIT-6,同时通过改变水热温度制备了不同孔径大小的SBA-15,并利用小角X射线散射、透射电镜、扫描电镜和氮气吸附-脱附等手段,对其介孔结构进行了表征.以正丁醛为探针分子,考察了其对有机醛的吸附,并与Y-沸石的吸附性能做了对比.结果表明,材料的介孔比表面积与其对正丁醛的吸附量成正比,吸附等温线符合Langmuir模型,属于单层吸附,具有最大介孔比表面积的MCM-41对正丁醛的吸附量最大(484 mg·g-1).最后将SBA-15添加到卷烟滤嘴中,实验结果表明,SBA-15能显著降低卷烟烟气中巴豆醛的释放量.  相似文献   

5.
Isotherms are measured for nitrogen, n-hexane, triethylamine, and water vapor adsorption on silicas of different origins, the surface layers of which contain functional groups of the ??Si(CH2)2P(O)(OH)2 composition, namely, ethylene- and phenylene-bridged polysilsesquioxane xerogels produced by the sol-gel method, silica microspheres synthesized from tetraethoxysilane in the presence of [CH3(CH2)17N(CH3)3]Br as a template by spray-drying method, and SBA-15 mesoporous silica produced based on tetraethoxysilane using Pluronic 123 as a template. It is shown that all of the samples possess high specific surface areas, while the types of adsorption isotherms and the accessibility of active acidic sites for adsorption interactions with electron-donor molecules depend on the structures of pores and surface layers, which are governed by the methods of synthesis and postsynthesis sample treatment.  相似文献   

6.
Small- and wide-angle X-ray scattering (SAXS and WAXS), shrinkage, and density experiments were performed on poly(butylene terephthalate) fibers which had been isothermally crystallized at different temperatures, and at constant tension, for times ranging from 100 to 1050 ms. A consistent correlation among WAXS, SAXS, and the kinetic results is demonstrated. Shrinkage results show that the crystallization process prevails over the chain-re-coiling process. Density measurements show that the rate of crystallization increases with temperature. Pinhole X-ray photos show that the orientation of the chains within the crystals remains constant with time and temperature. WAXS diffractometer scans show the development of wide-angle Bragg peaks. SAXS shows the development of small-angle Bragg peaks, as the annealing time is increased. The two-lobe arced pattern is the characteristic pattern. The value for long spacing ranged from 100 to 120 Å, increasing with temperature.  相似文献   

7.

A series of silica gels (Si-40, Si-60, Si-100) and related carbon–silica gels, prepared by carbonization of CH2Cl2 at a surface of silica gels at 550 °C, characterized using FTIR/PAS, SEM/EDX, and nitrogen adsorption, was investigated upon interactions with polar (water, dimethylsulfoxide), weakly polar (chloroform), and nonpolar (n-hexane, n-decane, benzene, toluene) adsorbates using adsorption and differential scanning calorimetry methods. Features of confined space effects, such as freezing/melting point depression and melting delay, depend strongly on pore sizes, pore wall structure, type and amount of adsorbates, and the degree of pore filling. Melting curves of both polar and nonpolar adsorbates bound in broad pores (Si-60 and Si-100 based materials) can include two–three peaks around melting point, but for Si-40-based materials, a number of similar peaks is smaller. This occurs due to step-by-step melting of frozen structures located in broader pores and the absence of similar effects in narrower pores. The present study shows that complex carbon–silica gel adsorbents can be more effective adsorbents than simple silica gels due to the presence of a number of surface sites of various polarity and structure.

  相似文献   

8.
Hexagonally ordered mesoporous silica material MCM-41 (SBET?=?1090?m2/g, pore size?=?31.2 ?) was synthesized and modified by 3-aminopropyl ligands. The differences in an uptake and subsequent release of anti-inflammatory drug naproxen from unmodified and amino modified MCM-41 samples were studied. The prepared materials were characterized by high resolution transmission electron microscopy (HRTEM) and scanning electron microscopy (SEM), nitrogen adsorption/desorption, Fourier-Transform Infrared Spectroscopy (FT-IR), Small-angle X-ray scattering (SAXS), thermoanalytical methods (TG/DTA) and elemental analysis. The amount of the drug released was monitored with thin layer chromatography (TLC) with densitometric detection in defined time intervals. The amounts of the released naproxen from mesoporous silica MCM-41/napro and amine-modified silica sample A-MCM-41/napro were 95 and 90% of naproxen after 72?h. In this study we compare the differences of release profiles from mesoporous silica MCM-41 and mesoporous silica SBA-15.  相似文献   

9.
Adsorption properties of amine-functionalized mesoporous silica NH2-SBA-15, zeolite-like imidazole framework ZIF-8, and amine-functionalized metal-organic polymer NH2-MIL-53 have been investigated. Non-modified mesoporous adsorbent SBA-15 has a higher sorption capacity for CO2 than microporous ZIF-8, although microporous sample is characterized by a larger surface area and the values of total pore volume are close. When amine groups are present on the surface of the adsorbents, the chemical adsorption contributes more then the physical one. The adsorption capacity increases with increasing concentration of the functional groups which, in its turn, correlates with adsorbent surface area. Among the studied samples, the best adsorption properties demonstrate amine-functionalized adsorbents, aminefunctionalized mesoporous silica NH2-SBA-15, and amine-functionalized metal-organic polymer NH2-MIL-53.  相似文献   

10.
The adsorption of CO2 on pore-expanded SBA-15 mesostructured silica functionalized with amino groups was studied. The synthesis of conventional SBA-15 was modified to obtain pore-expanded materials, with pore diameters from 11 to 15 nm. Post-synthesis functionalization treatments were carried out by grafting with diethylenetriamine (DT) and by impregnation with tetraethylenepentamine (TEPA) and polyethyleneimine (PEI). The adsorbents were characterized by X-ray diffraction, N2 adsorption–desorption at 77 K, elemental analysis and Transmission Electron Microscopy. CO2 capture was studied by using a volumetric adsorption technique at 45 °C. Consecutive adsorption–desorption experiments were also conducted to check the cyclic behaviour of adsorbents in CO2 capture. An improvement in CO2 adsorption capacity and efficiency of amino groups was found for pore-expanded SBA-15 impregnated materials in comparison with their counterparts prepared from conventional SBA-15 with smaller pore size. PEI and TEPA-based adsorbents reached significant CO2 uptakes at 45 °C and 1 bar (138 and 164 mg CO2/g, respectively), with high amine efficiencies (0.33 and 0.37 mol CO2/mol N), due to the positive effect of the larger pore diameter in the diffusion and accessibility of organic groups. Pore-expanded SBA-15 samples grafted with DT and impregnated with PEI showed a good stability after several adsorption–desorption cycles of pure CO2. PEI-impregnated adsorbent was tested in a fixed bed reactor with a diluted gas mixture containing 15 % CO2, 5 % O2, 80 % Ar and water (45 °C, 1 bar). A noteworthy adsorption capacity of 171 mg CO2/g was obtained in these conditions, which simulate flue gas after the desulphurization step in a thermal power plant.  相似文献   

11.
In this work, the synthesis strategy of a multifunctional system of [SBA-16/P(N-iPAAm)/Fe3O4] hybrids of interest for magneto-hyperthermia was explored. Magnetite nanoparticles coated by mesoporous silica were prepared by an alternative chemical route using neutral surfactant and without the application of any functionalization method. Monomer adsorption followed by in situ polymerization initiated by a radical was used to incorporate the hydrogel into the pore channels of the silica nanocomposite. Structural and magnetic characterization of the obtained materials was carried out by using thermal analysis, X-ray diffraction, N2 adsorption desorption isotherms, 57Fe Mössbauer spectroscopy, vibrating sample magnetometry and transmission electron microscopy. Measurements of alternating current magnetic-field-induced heating behaviour under different applied magnetic fields showed that the [SBA-16/P(N-iPAAm)/Fe3O4] hybrid here synthesized is suitable as a hyperthermia agent for biological applications.  相似文献   

12.
Catalytic hydrodeoxygenation (HDO) of anisole, a methoxy-rich lignin-derived bio-oil model compound, was carried out over a series of Ni-containing (5, 10, 20, and 30 wt%) catalysts with commercial silica and ordered mesoporous silica SBA-15 as support. Both supports and catalysts were characterized by N2 adsorption–desorption isotherms, X-ray diffraction, CO chemisorption, and transmission electron microscopy (TEM). Catalytic reaction was performed at 250 °C and 10 bar H2 pressure. Depending on the catalyst support used and the content of active metal, the catalytic activity and product distribution changed drastically. Increase of the nickel loading resulted in increased anisole conversion and C6 hydrocarbon (benzene and cyclohexane) yield. However, loading more Ni than 20 wt% resulted in a decrease of both conversion and C6 yield due to agglomeration of Ni particles. In addition, Ni/SBA-15 samples exhibited much stronger catalytic activity and selectivity toward C6 hydrocarbon products compared with Ni/silica catalysts. The differences in catalytic activity among these catalysts can be attributed to the effect of the pore size and pore structure of mesoporous SBA-15. SBA-15 can accommodate more Ni species inside channels than conventional silica due to its high pore volume with uniform pore structure, leading to high HDO catalytic activity.  相似文献   

13.
《Solid State Sciences》2012,14(2):250-257
CO2 adsorption properties on Mg modified silica mesoporous materials were investigated. By using the methods of co-condensation, dispersion and ion-exchange, Mg2+ was introduced into SBA-15 and MCM-41, and transformed into MgO in the calcination process. The basic MgO can provide active sites to enhance the acidic CO2 adsorption capacity. To improve the amount and the dispersion state of the loading MgO, the optimized modification conditions were also investigated. The XRD and TEM characteristic results, as well as the CO2 adsorption performance showed that the CO2 adsorption capacity not only depended on the pore structures of MCM-41 and SBA-15, but also on the improvement of the dispersion state of MgO by modification. Among various Mg modified silica mesoporous materials, the CO2 adsorption capacity increased from 0.42 mmol g−1 of pure silica SBA-15 to 1.35 mmol g−1 of Mg–Al–SBA-15-I1 by the ion-exchange method enhanced with Al3+ synergism. Moreover, it also increased from 0.67 mmol g−1 of pure silica MCM-41 to 1.32 mmol g−1 of Mg–EDA–MCM-41-D10 by the dispersion method enhanced with the incorporation of ethane diamine. The stability test by 10 CO2 adsorption/desorption cycles showed Mg–urea–MCM-41-D10 possessed quite good recyclability.  相似文献   

14.
The self-assembly of nonionic surfactants in the cylindrical pores of SBA-15 silica with a pore diameter of 8 nm was studied by small-angle neutron scattering (SANS) at different solvent contrasts. The alkyl ethoxylate surfactants C(10)E(5) and C(12)E(5) exhibit strong aggregative adsorption in the pores as indicated by the sigmoidal shape of the adsorption isotherms. The SANS intensity profiles can be represented by a sum of two terms, one accounting for diffuse scattering from surfactant aggregates in the pores and the other for Bragg scattering from the pore lattice of the silica matrix. The Bragg reflections are analyzed with a form factor model in which the radial density profile of the surfactant in the pore is approximated by a two-step function. Diffuse scattering is represented by a Teubner-Strey-type scattering function which indicates a preferred distance between adsorbed surface aggregates in the pores. Our results suggest that adsorption starts with formation of discrete surface aggregates which increase in number and eventually merge to interconnected patches as the plateau value of the adsorption isotherm is approached. A grossly different behavior, viz. formation of micelles as in solution, is found for the maltoside surfactant C(10)G(2), in agreement with the observed weak adsorption of this surfactant in SBA-15.  相似文献   

15.
KIT-1介孔分子筛的化学修饰及吸附性能   总被引:1,自引:0,他引:1  
介孔分子筛MCM-41具有较大、可调的孔径和较高的比表面积,其骨架组成具有较强的可调变性.为该材料的应用提供了很大的空间。但全硅MCM-41分子筛在潮湿空气中,即使在室温条件下也会发生水解反应,使其介孔结构遭到破坏。前人已针对MCM-41分子筛稳定性不足的问题相继合成了稳定性较高的介孔分子筛KIT-1,  相似文献   

16.
田博士  杨春 《化学学报》2008,66(5):505-510
采用自由基引发原位聚合(in situ polymerization)的方法合成了温敏性聚N-异丙基丙烯酰胺(PNIPAAm)/介孔分子筛SBA-15纳米复合物. 用FT-IR、XRD、TEM、低温N2吸附-脱附、TG和DSC等手段对复合物进行了表征, 结果表明, 单体N-异丙基丙烯酰胺(NIPAAm)在介孔孔内发生了原位聚合, 聚合物PNIPAAm比较均匀地附于孔壁, 含量达24%左右. 这一聚合和孔内填充没有破坏SBA-15的有序六方结构, 但使样品的表面积、孔径、孔容减小. 同时, 这一有机-无机纳米复合物仍然保持PNIPAAm的温度响应性, 最低临界溶解温度(LCST)与纯PNIPAAm相似.  相似文献   

17.
For air-cleaning, TiO2 photocatalysis represents one of the very efficient advanced oxidation processes (AOPs) that can decompose chemically and microbiologically stable volatile organic compounds (VOCs). However, the photocatalytic activity of nanocrystalline TiO2 powders can be significantly suppressed due to TiO2’s poor adsorption characteristics for organic compounds and its relatively low surface area. The present study sought to solve this problem by immobilising nanocrystalline TiO2 in the porous silicate substrate. Two titania sources were used in an aqueous solution form: a suspension from a TiO2 producer in Slovenia, Cinkarna Celje (CC-40) and a TiO2 sol, prepared by a low-temperature synthesis developed at the University of Nova Gorica (TiO2-UNG). Two different types of mesoporous silica were used: SBA-15 with an ordered hexagonal pore arrangement and KIL-2 with disordered inter-particle mesoporosity. The structural characteristics, adsorption properties and photocatalytic activity of catalysts deposited on aluminium plates as thin films were investigated. CC-40 exhibited higher adsorption and photocatalytic activity than TiO2-UNG due to the greater quantity of Ti-OH groups on its surface. The addition of mesoporous silica led to higher adsorption and catalytic activity for both TiO2 sources. SBA-15 was more efficient than KIL-2.  相似文献   

18.
The direct electron transfer between hemoglobin (Hb) and an electrode was realized by first immobilizing the protein onto SBA-15.The results of the immobilization showed that the adsorption was pH-dependent with a maximum adsorption near the isoelectric point of the protein, and SBA-15 with a larger pore diameter showed greater adsorption capacity for Hb. UV–vis spectroscopy and nitrogen adsorption analysis indicated that Hb was adsorbed within the channel of SBA-15 and no significant denaturation occurred to the protein. The Hb/SBA-15 composite obtained was used for the fabrication of a Hb biosensor to detect hydrogen peroxide. A pair of well-defined redox peaks at −0.337 and −0.370 V on the Hb/SBA-15 composite modified glassy carbon electrode was observed, and the electrode reactions showed a surface-controlled process with a single proton transfer at a scan rate range from 20 to 1,000 mV/s. The sensor showed a fast amperometric response, a low detection limit (2.3 × 10−9 M) and good stability for the detection of H2O2. The electrochemical results indicated that the immobilized Hb still retained its biological activity.  相似文献   

19.
This study reports the usage of molybdovanadophosphoric acid catalyst on amino-functionalized SBA-15(PMoV2/SBA-15-NH2) for the removal of sulfur from model oil (dibenzothiophene dissolved in n-hexane). To increase the tendency for adsorption of heteropoly acids, mesoporous SBA-15 silica was functionalized with amino groups by postsynthesis grafting, using 3-aminopropyltrimethoxy silane as the coupling agent. Immobilization of molybdovanadophosphoric acid on pure SBA-15 (PMoV2/SBA-15) was also studied for comparison and the catalysts were characterized by physicochemical and spectroscopic methods. It was found that the catalysts exhibit high catalytic activities and PMoV2/SBA-15-NH2 is more durable than PMoV2 impregnated on unmodified mesoporous SBA-15 silica. The results may bring about improvement for oxidative desulfurization of transportation fuels.  相似文献   

20.
Sun  Zechun  Wang  Yiran  Zhang  Zhiruo  Zhu  Fengxia  Zhao  Pusu  Li  Guisheng  Shao  Fengfeng  Rui  Jiahui 《Research on Chemical Intermediates》2019,45(5):3107-3121

An imine-functionalized mesoporous solid base catalyst (BA@BE-PMO) was prepared by template agent-directed self-assembly condensation of bis[3-(triethoxysilyl)propyl]amine and 1,2-bis(triethoxysilyl)ethane in acid solution. The imine groups with catalytic activity were integrally embedded into mesopore walls of as-made BA@BE-PMO. In Knoevenagel reactions in aqueous medium, the BA@BE-PMO catalyst exhibited better catalytic activity than imine-functionalized SBA-15 catalyst synthesized using the traditional co-condensation method, which can be attributed to the pore surface with strong hydrophobicity originating from –CH2CH2– group fragments incorporated into pore walls. The strong hydrophobicity of the surface facilitates adsorption and diffusion of organic compounds on the catalyst surface in reactions in aqueous medium. Moreover, it exhibited comparable catalytic activity to dipropylamine homogeneous base catalyst because of the uniform dispersion of imine group active sites. The BA@BE-PMO catalyst could also be recovered and reused in up to five runs without significant loss in activity without any negative environmental impact.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号