首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
The biomass of Penicillium chrysogenum was modified by graft polymerization of acrylic acid (AAc) on the surface of ozone-pretreated biomass. The sorption capacity for copper and cadmium increased significantly as a large number of carboxyl groups were present on the biomass surface, especially when the carboxylic acid group was converted to carboxylate ions using NaOH. When modeled using the Langmuir isotherm, the sorption capacities were 1.70 and 1.87 mmol g(-1) for copper and cadmium, respectively. The loaded biosorbent was regenerated using HCl solution and used repeatedly over five cycles with little loss of uptake capacity beyond the second cycle. The sorption of the two metals was time-dependent, and the kinetics fitted the pseudo-second-order equation well. The Freundlich, Langmuir, Temkin, and Dubinin-Redushkevich isotherms were used to model the metal sorption isotherms, and the thermodynamic parameters calculated show that the sorption was spontaneous and endothermic under the condition applied and that the biomass has similar sorption affinities for the two metals. Fourier transform infrared and X-ray photoelectron spectroscopy reveal that carboxyl, amide, and hydroxyl groups on the biomass surface were involved in the sorption of copper and cadmium and ion exchange and complexation dominated the sorption process.  相似文献   

3.
In this paper, water sorption isotherms into date kernels give interesting insights about the sorption mechanism. The equilibrium adsorption data expressing the change in moisture content of date kernels were collected at three different temperatures using the static gravimetric technique. The adsorption isotherm profiles demonstrated that this process was performed via an infinite number of layers. A modified form of the Brunauer, Emett and Teller (BET) model is obtained based on the use of the real gas law and statistical physics treatment so the interaction between molecules is considered. This advanced model is used to fit experimental isotherms by numerical simulation. The sorption mechanism is theoretically explained by the parameters that could be related to the water adsorption process. Based on fitting results, we find that the number of molecules per site (parameter n) has a linear tendency with temperature thanks to the thermal agitation effect. A deeper analysis of adsorption energy demonstrates that the water vapors are physisorbed in the date kernels. Through the exploitation of our model, three classic thermodynamic functions are investigated to interpret the macroscopic aspect of the adsorption mechanism.  相似文献   

4.
Standard isotherms of the sorption of water, methanol, and benzene vapors on cellulose using a cellulose standard are determined. The standard, namely, mesoporous cellulose with specific surface of up to 350 m2/g, is obtained by the method of exchanging water in swollen cellulose with organic solvents. A comparison of the experimental sorption isotherm with the standard isotherm makes it possible to determine the specific surface of celluloses accessible a the given sorbate and, in combination with the Brunauer-Emmett-Teller adsorption equation, to characterize their surface properties. The identity of the sorption properties of the initial and dewatered (porous) celluloses relative to active vapors is shown, which evidences the assumed mechanism of swelling as the sorbent's division into morphological structures with the formation of new surface. A comparative analysis of the sorption properties of cellulose and silica, whose nature of active sorption centers is similar (weak acid hydroxyl groups), has been made. The affinity of the standard isotherms and close values of the cross-sectional area of different sorbates on both sorbents testify the similarity in their sorption behavior. Thus, the processes of sorption with rigid and swelling sorbents can be regarded in a unified context. Therefore, the adsorption models developed for rigid sorbents can be applied to cellulose sorbents to analyze their sorption properties.  相似文献   

5.
A Monte Carlo simulation method is used to study the effects of adsorption strength and topology of sites on adsorption of simple Lennard-Jones fluids in a carbon slit pore of finite length. Argon is used as a model adsorbate, while the adsorbent is modeled as a finite carbon slit pore whose two walls composed of three graphene layers with carbon atoms arranged in a hexagonal pattern. Impurities having well depth of interaction greater than that of carbon atom are assumed to be grafted onto the surface. Different topologies of the impurities; corner, centre, shell and random topologies are studied. Adsorption isotherms of argon at 87.3 K are obtained for pore having widths of 1, 1.5 and 3 nm using a Grand Canonical Monte Carlo simulation (GCMC). These results are compared with isotherms obtained for infinite pores. It is shown that the surface heterogeneity affects significantly the overall adsorption isotherm, particularly the phase transition. Basically it shifts the onset of adsorption to lower pressure and the adsorption isotherms for these four impurity models are generally greater than that for finite pore. The positions of impurities on solid surface also affect the shape of the adsorption isotherm and the phase transition. We have found that the impurities allocated at the centre of pore walls provide the greatest isotherm at low pressures. However when the pressure increases the impurities allocated along the edges of the graphene layers show the most significant effect on the adsorption isotherm. We have investigated the effect of surface heterogeneity on adsorption hysteresis loops of three models of impurity topology, it shows that the adsorption branches of these isotherms are different, while the desorption branches are quite close to each other. This suggests that the desorption branch is either the thermodynamic equilibrium branch or closer to it than the adsorption branch.  相似文献   

6.
The ion exchange equilibrium of Pb(II) on clinoptilolite modified with NH(4)Cl and NaCl can be represented by two types of isotherms. The first one is the ion exchange isotherm based upon the constant of thermodynamic equilibrium for the ion exchange reaction; however, the fitting procedure for this isotherm can be very tedious due to all the calculations involved and additional thermodynamic data. The second one is the Langmuir isotherm. The use of the Langmuir isotherm to represent ion exchange equilibrium has increased in recent last years since it adequately fits the equilibrium data and, furthermore, its calculation is much simpler. A comparison between the two isotherms showed that they fitted the experimental data reasonably well, but the Langmuir isotherm is much simpler and easier to use.  相似文献   

7.
The sorption of Co(II) on Na-attapulgite as a function of contact time, solid content, pH, ionic strength, foreign ions, fulvic acid (FA) and temperature under ambient conditions was studied. The kinetic of Co(II) sorption on Na-attapulgite was described well by pseudo-second-order model. The sorption of Co(II) on Na-attapulgite was strongly dependent on pH and ionic strength. The sorption of Co(II) was mainly dominated by outer-sphere surface complexation and/or ion exchange at low pH, whereas inner-sphere surface complexation or surface precipitation was the main sorption mechanism at high pH values. The presence of FA did not affect Co(II) sorption obviously at pH <7, and a negative effect was observed at pH >7. The Langmuir and Freundlich models were used to simulate the sorption data at different temperatures, and the results indicated that the Langmuir model simulated the data better than the Freundlich isotherm model. The thermodynamic parameters (∆G°, ∆S°, ∆H°) calculated from the temperature-dependent sorption isotherms indicated that the sorption of Co(II) on Na-attapulgite was an endothermic and spontaneous process. The results suggest that the attapulgite sample is a suitable material in the preconcentration and solidification of radiocobalt from large volumes of aqueous solutions.  相似文献   

8.
In this study, natural halloysite nanotubes (HNTs) were applied to remove radiocobalt from wastewaters under various environmental parameters such as contact time, pH, ionic strength, foreign ions and temperature by using batch technique. The results indicated that the sorption of Co(II) on HNTs was dependent on ionic strength at pH < 8.5 and independent of ionic strength at pH > 8.5. Langmuir and Freundlich models were applied to simulate the sorption isotherms of Co(II) at three different temperatures of 293, 313 and 333 K. Langmuir model fitted the sorption isotherms of Co(II) on HNTs better than Freundlich model. The thermodynamic parameters (ΔG 0, ΔS 0 and ΔH 0) calculated from the temperature-dependent sorption isotherms manifested that the sorption of Co(II) on HNTs was an endothermic and spontaneous process. The sorption of Co(II) was dominated by outer-sphere surface complexation or ion exchange at low pH, whereas inner-sphere surface complexation or precipitation was the main sorption mechanism at high pH. The experimental results show that HNTs have good potentialities for cost-effective disposal of cobalt-bearing wastewaters.  相似文献   

9.
Macroporous poly(methyl methacrylate-co-divinylbenzene) (PMMA), interpenetrating polymer adsorbent based on poly(styrene-co-divinylbenzene) (PS) and poly(methyl methacrylate-co-divinylbenzene) (PMMA/PS), and macroporous cross-linked poly(N-p-vinylbenzyl acetylamide) (PVBA) were prepared for the adsorption of phenol from cyclohexane. The sorption isotherms of phenol on the three polymeric adsorbents were measured and fitted to Langmuir and Freundlich isotherms. It is shown that the Langmuir isotherm, which is based on a homogeneous surface model, is unsuitable to describe the sorption of phenol on the adsorbents from nonaqueous solution and the Freundlich equation fits the tested three adsorption systems well. The isosteric enthalpy was quantitatively correlated with the fractional loading for the sorption of phenol onto the three polymeric adsorbents. The surface energetic heterogeneity patterns of the adsorbents were described with functions of isosteric enthalpy. The results showed that the tested three polymeric adsorbents exhibited different surface energetic heterogeneity patterns. The initial isosteric enthalpy of phenol sorption on polymeric adsorbent has to do with the surface chemical composition and is free from the pore structure of the polymeric adsorbent matrix. Forming hydrogen bonds between phenol molecules and adsorbent is the main driving force of phenol sorption onto PVBA and PMMA adsorbent from nonaqueous solution. When phenol is adsorbed on PMMA/PS, pi-pi interaction resulting from the stacking of the benzene rings of the adsorbed phenol molecules and the pendant benzene ring of adsorbent is involved.  相似文献   

10.
Adsorption of fluoride ion was done from its aqueous solution by using maghemite (γ-Fe2O3) nanoparticles. Effects of the major independent variables (temperature, adsorbent dose and pH) and their interactions during fluoride ion adsorption were determined by response surface methodology (RSM) based on three-level three-factorial Box–Behnken design (BBD). Optimized values of temperature, maghemite nanoparticle dose and pH for fluoride sorption were found as 313 K, 0.5 g/L, and 4, respectively. In order to investigate the mechanism of fluoride removal, various adsorption isotherms such as Langmuir, Freundlich, Temkin and Florry–Huggins were fitted. The experimental data revealed that the Langmuir isotherm gave a more satisfactory fit for fluoride removal. The adsorption process was rapid and obeyed pseudo-second-order kinetics. The values of thermodynamic parameters ΔG°, ΔH° and ΔS° indicated that adsorption was spontaneous and endothermic in nature.  相似文献   

11.
Adsorption of zearalenone (ZEN) by natural zeolitic tuff, modified with different numbers of octadecyldimethylbenzylammonium (ODMBA) ions, was investigated. The results of solid-state 1H NMR analysis of the starting material suggested that zeolitic tuff is rich in mineral clinoptilolite, confirming the results of previous thermal stability study. Three organozeolites (OZ-2, OZ-5, and OZ-10) were prepared with ODMBA surface coverages of 20, 50, and 100 mmol/100 g. The mechanism of ZEN sorption by the three organozeolites was investigated through the determination of the adsorption isotherms at pH 3, 7, and 9. Adsorption of ZEN by organozeolites was best represented by a linear type of isotherm at pH 3, while at pH 7 and 9, adsorption of ZEN by organozeolites followed a nonlinear (Langmuir) type of isotherm. The different shape of the ZEN adsorption isotherms for the three organozeolites with different levels of ODMBA at the zeolitic surface at different pH values suggests that the adsorption mechanism may be dependent on the form of ZEN in solution. Since, at pH 3, ZEN exists in solution as the neutral form, the linear isotherms at pH 3 suggested that hydrophobic interactions are probably responsible for adsorption of neutral, hydrophobic ZEN onto the hydrophobic surface of the organozeolites. At pH 7, the phenolate anion is present in water solution, while at pH 9, ZEN is almost entirely in the anionic form. The nonlinear isotherms obtained for ZEN adsorption by the three organozeolites suggest that sorption appears to be the result of the adsorption process as well as partitioning.  相似文献   

12.
Summary Sorption of radionuclides onto surrounding rocks play an important role in retarding the migration of radionuclides from a radioactive waste repository. The sorption isotherm model is usually used to describe the sorption behaviors and assess the sorption potential of radionuclides on rock. However, most of the studies to investigate the feasibility of isotherm models for the sorption of radionuclides are based on the assumption that the sorption energy is uniform and homogeneously distributed on the sorbent surfaces. In this study, two heterogeneity-based isotherms, Langmuir-Freundlich isotherm model (LF) and generalized-Freundlich isotherm model (GF), were used for the evaluation of the sorption characteristics of cesium on the selected Taiwan tuff and basalt. The sorption experiments in this study were carried out by batch method, and the experimental data were modeled by LF and GF heterogeneity-based isotherm models. The results showed that both of the LF and GF models could fit the data more perfectly than the Langmuir model. The heterogeneity of sorption onto tuff and basalt could be well characterized by the LF and GF models by means of the calculation and plotting of the affinity spectrum. The results showed that the sorption surface of tuff is more heterogeneous and complex than that of basalts.  相似文献   

13.
The sorption of uranyl ions on crystalline bismuth molybdenum hydrous oxide and its intercalates were investigated from point of view of both equilibrium and kinetics. Ion exchange isotherms of uranyl ions on the crystals were obtained, and ionic sieve effect was employed to describe the characteristics of ion exchange isotherms. The best fitting for sorption of uranyl ions on BMHO was achieved by means of the Langmuir isotherm, while the Freundlich isotherm appeared to best fit for its intercalates. The slightly negative free-energy change indicates that, thermodynamically, the crystals behave less favourable for uranyl ions. The equation derived from SN2 chemical reactions was proved to fit the rate curves, and the rate constants were determined. The comparison between the calculated and observed pH values as a function of time further verified the chemical reaction mechanism.  相似文献   

14.
A novel surface ion imprinted adsorbent [Co(II)‐IIP] using polyethyleneimine (PEI) as function monomer and ordered mesoporous silica SBA‐15 as support matrix was prepared for Co(II) analysis with high selectivity. The prepared polymer was characterized by Fourier transmission infrared spectrometry, scanning electron microscopy, X‐ray diffraction and nitrogen adsorption‐desorption isotherm. Bath experiments of Co(II) adsorption onto Co(II)‐IIP were performed under the optimum conditions. The experimental data were analyzed by pseudo‐first‐order and pseudo‐second‐order kinetic models. It was found that the pseudo‐second‐order model best correlated the kinetic data. The intraparticle diffusion and liquid film diffusion were applied to discuss the adsorption mechanism. The results showed that Co(II) adsorption onto IIP was controlled by the intraparticle diffusion mechanism, along with a considerable film diffusion contribution. Langmuir, Freundlich and Dubinin‐Radushke‐ vich adsorption models were applied to determine the isotherm parameters. Langmuir model fitted the experiment data well and the maximum calculated capacity of Co(II) reached 39.26 mg/g under room temperature. The thermodynamic data were indicative of the spontaneousness of the endothermic sorption process of Co(II) onto Co(II)‐IIP. Co(II)‐IIP showed high affinity and selectivity for template ion compared with non imprinted polymer (NIP).  相似文献   

15.
The kaolinite sample was characterized by Fourier transform infrared spectroscopy (FT-IR) and X-ray powder diffraction, and was applied as adsorbent for the removal of radiocobalt ions from radioactive wastewater. The results demonstrated that the sorption of Co(II) was strongly dependent on pH and ionic strength at low pH values, and independent of pH and ionic strength at high pH values. The sorption of Co(II) was dominated by outer-sphere surface complexation or ion exchange at low pH values, whereas inner-sphere surface complexation was the main sorption mechanism at high pH values. The sorption isotherms were well described by Langmuir, Freundlich and Dubinin–Radushkevich models. The thermodynamic parameters (i.e., ΔG°, ΔS°, ΔH°) calculated from the temperature-dependent sorption isotherms indicated that the sorption of Co(II) on kaolinite was an endothermic and spontaneous process. The results of high sorption capacity of kaolinite suggested that the kaolinite sample was a suitable material for the preconcentration of Co(II) from large volumes of aqueous solutions and as backfill materials in nuclear waste management.  相似文献   

16.
The isotherms of adsorption of benzene, anisole, benzyl alcohol, and benzaldehyde on the surface of microspherical mesoporous crosslinked cellulose were calculated from the chromatographic peaks of these compounds with consideration given to the longitudinal smearing of the analyte zone under the action of adsorption forces. The solvents were n-heptane-isopropanol mixtures containing various amounts of isopropanol (up to 2 vol %). The adsorption isotherms were described using equations of the displacement adsorption theory. The mechanism of the sorption of aromatic compounds and the physical meaning of the constants entering into the adsorption isotherm equation were discussed.  相似文献   

17.
A thermodynamic model of gas/solid adsorption has been constructed from two elements. One of those is the original Gibbs equation. The second is functions psi(theta) or psi(P) calculable from measured isotherms. The model provides the possibility of calculating the relative change in free energy of the surface, and based on the model, implicit isotherm equations of general validity and in integral form can be derived. The prediction of isotherms can be made based on characteristic adsorption functions (CAFs). The CAFs concentrate in one function all measured isotherms having the same change in relative free energy of the surface. From CAFs any isotherm can be predicted if one measured point is known or one required datum of the isotherm can be defined. The maximum average deviation between the measured adsorbed amounts and those calculated from the CAFs is +/-10%. The CAFs are very sensitive to the internal structure of adsorbents (micro-, meso-, and macropores and nanostructures). It is the goal of future investigations to determine the exact connections related to the CAFs and to the structure of adsorbents.  相似文献   

18.
Nitrogen adsorption isotherms on nonporous and microporous carbons were thoroughly studied at low relative pressures. For nonporous carbons low pressure measurements seem to be unaffected by analysis conditions. However, these measurements on microporous solids may be affected by analysis conditions at relative pressures below 10–4. It was shown that selection of proper equilibration time is crucial for correct measurements of equilibrium pressures during adsorption on microporous carbons. The isotherm shift induced by insufficient equilibration of the system may affect the surface heterogeneity and microporosity analysis. A comparison of the adsorption energy and pore volume distribution functions calculated from low pressure nitrogen adsorption isotherms measured at different equilibration times on a microporous carbon shows that this effect is smaller than it was expected.  相似文献   

19.
Adsorption of Promethazine hydrochloride (PHCl) onto KSF Montmorillonite from aqueous solution has been investigated. Experiments were conducted at various pH values, ionic backgrounds and solution temperatures. The pseudo-second-order equation successfully predicted the adsorption among the tried kinetics models (pseudo-first-order, pseudo-second-order and intraparticle diffusion). Langmuir, Freundlich and DR adsorption models were used to describe equilibrium isotherms and the isotherm constants were obtained. The increase in solution temperature caused a decrease in the adsorption capacity values found from Freundlich and DR isotherm. The adsorption type can be explained by combined ion exchange and physisorption. Thermodynamic parameters of adsorption of Promethazine hydrochloride (PHCl) onto KSF were also evaluated. The surface morphologies of KSF and PHCl loaded KSF were examined using a scanning electron microscope (SEM). FTIR measurements of samples were also conducted.  相似文献   

20.
The sorption equilibrium and kinetics of cadmium ions from aqueous solution onto bone char have been studied. Equilibrium isotherms for the sorption system were correlated by Langmuir and bi-Langmuir equations. The application of the bi-Langmuir equation was developed because the mechanistic analysis in this research indicated that cadmium removal occurs ion exchange and physical adsorption onto different surface sites. The bi-Langmuir equation provides a better fit to the experimental data. In addition, the removal rates of cadmium ions based on the Langmuir models have been investigated. The effective diffusivity was calculated using the effects of initial metal ion concentration and bone char mass. Two mass-transport models based on film-pore diffusion control have been applied to analyze the concentration decay curves. The film and pore diffusion coefficients using an analytical equation are equal to 1.26x10(-3) cm/s and 5.06x10(-7) cm(2)/s, respectively. The pore diffusion coefficient obtained from the numerical method is 4.89x10(-7) cm(2)/s. A sensitivity analysis showed that the film-pore diffusion model and constant effective diffusivity could be used to describe the mass-transport mechanism of the sorption system with a high degree of correlation. Copyright 2001 Academic Press.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号