首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Amide 15N chemical shift anisotropy (CSA) tensors provide quantitative insight into protein structure and dynamics. Experimental determinations of 15N CSA tensors in biologically relevant molecules have typically been performed by NMR relaxation studies in solution, goniometric analysis of single-crystal spectra, or slow magic-angle spinning (MAS) NMR experiments of microcrystalline samples. Here we present measurements of 15N CSA tensor magnitudes in a protein of known structure by three-dimensional MAS solid-state NMR. Isotropic 15N, 13C alpha, and 13C' chemical shifts in two dimensions resolve site-specific backbone amide recoupled CSA line shapes in the third dimension. Application of the experiments to the 56-residue beta1 immunoglobulin binding domain of protein G (GB1) enabled 91 independent determinations of 15N tensors at 51 of the 55 backbone amide sites, for which 15N-13C alpha and/or 15N-13C' cross-peaks were resolved in the two-dimensional experiment. For 37 15N signals, both intra- and interresidue correlations were resolved, enabling direct comparison of two experimental data sets to enhance measurement precision. Systematic variations between beta-sheet and alpha-helix residues are observed; the average value for the anisotropy parameter, delta (delta = delta(zz) - delta(iso)), for alpha-helical residues is 6 ppm greater than that for the beta-sheet residues. The results show a variation in delta of 15N amide backbone sites between -77 and -115 ppm, with an average value of -103.5 ppm. Some sites (e.g., G41) display smaller anisotropy due to backbone dynamics. In contrast, we observe an unusually large 15N tensor for K50, a residue that has an atypical, positive value for the backbone phi torsion angle. To our knowledge, this is the most complete experimental analysis of 15N CSA magnitude to date in a solid protein. The availability of previous high-resolution crystal and solution NMR structures, as well as detailed solid-state NMR studies, will enhance the value of these measurements as a benchmark for the development of ab initio calculations of amide 15N shielding tensor magnitudes.  相似文献   

2.
NMR relaxation data on disordered proteins can provide insight into both structural and dynamic properties of these molecules. Because of chemical shift degeneracy in correlation spectra, detailed site-specific analyses of side chain dynamics have not been possible. Here, we present new experiments for the measurement of side chain dynamics in methyl-containing residues in unfolded protein states. The pulse schemes are similar to recently proposed methods for measuring deuterium spin relaxation rates in (13)CH(2)D methyl groups in folded proteins.(1) However, because resolution in (1)H-(13)C correlation maps of unfolded proteins is limiting, relaxation data are recorded as a series of (1)H-(15)N spectra. The methodology is illustrated with an application to the study of side chain dynamics in delta131delta, a large disordered fragment of staphylococcal nuclease containing residues 1-3 and 13-140 of the wide-type protein. A good correlation between the order parameters of the symmetry axes of the methyl groups and the backbone (1)H-(15)N bond vectors of the same residue is observed. Simulations establish that such a correlation is only possible if the unfolded state is comprised of an ensemble of structures which are not equiprobable. A motional model, which combines wobbling-in-a-cone and Gaussian axial fluctuations, is proposed to estimate chi(1) torsion angle fluctuations, sigma(chi)()1, of Val and Thr residues on the basis of the backbone and side chain order parameters. Values of sigma(chi)()1 are approximately 10 degrees larger than what has previously been observed in folded proteins. Of interest, the value of sigma(chi)()1 for Val 104 is considerably smaller than for other Val or Thr residues, suggesting that it may be part of a hydrophobic cluster. Notably large (15)N transverse relaxation rates are observed in this region. To our knowledge, this is the first time that side chain dynamics in an unfolded state have been studied in detail by NMR.  相似文献   

3.
NMR studies of paramagnetic proteins are hampered by the rapid relaxation of nuclei near the paramagnetic center, which prevents the application of conventional methods to investigations of the most interesting regions of such molecules. This problem is particularly acute in systems with slow electronic relaxation rates. We present a strategy that can be used with a protein with slow electronic relaxation to identify and assign resonances from nuclei near the paramagnetic center. Oxidized human [2Fe-2S] ferredoxin (adrenodoxin) was used to test the approach. The strategy involves six steps: (1) NMR signals from (1)H, (13)C, and (15)N nuclei unaffected or minimally affected by paramagnetic effects are assigned by standard multinuclear two- and three-dimensional (2D and 3D) spectroscopic methods with protein samples labeled uniformly with (13)C and (15)N. (2) The very broad, hyperfine-shifted signals from carbons in the residues that ligate the metal center are classified by amino acid and atom type by selective (13)C labeling and one-dimensional (1D) (13)C NMR spectroscopy. (3) Spin systems involving carbons near the paramagnetic center that are broadened but not hyperfine-shifted are elucidated by (13)C[(13)C] constant time correlation spectroscopy (CT-COSY). (4) Signals from amide nitrogens affected by the paramagnetic center are assigned to amino acid type by selective (15)N labeling and 1D (15)N NMR spectroscopy. (5) Sequence-specific assignments of these carbon and nitrogen signals are determined by 1D (13)C[(15)N] difference decoupling experiments. (6) Signals from (1)H nuclei in these spin systems are assigned by paramagnetic-optimized 2D and 3D (1)H[(13)C] experiments. For oxidized human ferredoxin, this strategy led to assignments (to amino acid and atom type) for 88% of the carbons in the [2Fe-2S] cluster-binding loops (residues 43-58 and 89-94). These included complete carbon spin-system assignments for eight of the 22 residues and partial assignments for each of the others. Sequence-specific assignments were determined for the backbone (15)N signals from nine of the 22 residues and ambiguous assignments for five of the others.  相似文献   

4.
The structure of the membrane protein MerFt was determined in magnetically aligned phospholipid bicelles by solid-state NMR spectroscopy. With two trans-membrane helices and a 10-residue inter-helical loop, this truncated construct of the mercury transport membrane protein MerF has sufficient structural complexity to demonstrate the feasibility of determining the structures of polytopic membrane proteins in their native phospholipid bilayer environment under physiological conditions. PISEMA, SAMMY, and other double-resonance experiments were applied to uniformly and selectively (15)N-labeled samples to resolve and assign the backbone amide resonances and to measure the associated (15)N chemical shift and (1)H-(15)N heteronuclear dipolar coupling frequencies as orientation constraints for structure calculations. (1)H/(13)C/(15)N triple-resonance experiments were applied to selectively (13)C'- and (15)N-labeled samples to complete the resonance assignments, especially for residues in the nonhelical regions of the protein. A single resonance is observed for each labeled site in one- and two-dimensional spectra. Therefore, each residue has a unique conformation, and all protein molecules in the sample have the same three-dimensional structure and are oriented identically in planar phospholipid bilayers. Combined with the absence of significant intensity near the isotropic resonance frequency, this demonstrates that the entire protein, including the loop and terminal regions, has a well-defined, stable structure in phospholipid bilayers.  相似文献   

5.
(15)N spin relaxation data have provided a wealth of information on protein dynamics in solution. Standard R(1), R(1)(rho), and NOE experiments aimed at (15)N[(1)H] amide moieties are complemented in this work by HA(CACO)N-type experiments allowing the measurement of nitrogen R(1) and R(1)(rho) rates at deuterated (15)N[(2)D] sites. Difference rates obtained using this approach, R(1)((15)N[(1)H]) - R(1)((15)N[(2)D]) and R(2)((15)N[(1)H]) - R(2)((15)N[(2)D]), depend exclusively on dipolar interactions and are insensitive to (15)N CSA and R(ex) relaxation mechanisms. The methodology has been tested on a sample of peptostreptococcal protein L (63 residues) prepared in 50% H(2)O-50% D(2)O solvent. The results from the new and conventional experiments are found to be consistent, with respect to both local backbone dynamics and overall protein tumbling. Combining several data sets permits evaluation of the spectral density J(omega(D) + omega(N)) for each amide site. This spectral density samples a uniquely low frequency (26 MHz at a 500 MHz field) and, therefore, is expected to be highly useful for characterizing nanosecond time scale local motions. The spectral density mapping demonstrates that, in the case of protein L, J(omega(D) + omega(N)) values are compatible with the Lipari-Szabo interpretation of backbone dynamics based on the conventional (15)N relaxation data.  相似文献   

6.
刘雪辉  林东海 《中国化学》2007,25(3):411-416
This paper describes an amide-exchange-rate-edited (AERE) NMR method that can effectively alleviate the problem of resonance overlap for proteins and peptides. This method exploits the diversity of amide proton exchange rates and consists of two complementary experiments: (1) SEA (solvent exposed amide)-type NMR experiments to map exchangeable surface residues whose amides are not involved in hydrogen bonding, and (2) presat-type NMR experiments to map solvent inaccessibly buried residues or nonexchangeable residues located in hydrogen-bonded secondary structures with properly controlled saturation transfer via amide proton exchanges with the solvent. This method separates overlapping resonances in a spectrum into two complementary spectra. The AERE-NMR method was demonstrated with a sample of ^15N/^13C/^2H(70%) labeled ribosome-inactivating protein trichosanthin of 247 residues.  相似文献   

7.
(15)N relaxation dispersion experiments were applied to the isolated N-terminal SH3 domain of the Drosophila protein drk (drkN SH3) to study microsecond to second time scale exchange processes. The drkN SH3 domain exists in equilibrium between folded (F(exch)) and unfolded (U(exch)) states under nondenaturing conditions in a ratio of 2:1 at 20 degrees C, with an average exchange rate constant, k(ex), of 2.2 s(-1) (slow exchange on the NMR chemical shift time scale). Consequently a discrete set of resonances is observed for each state in NMR spectra. Within the U(exch) ensemble there is a contiguous stretch of residues undergoing conformational exchange on a micros/ms time scale, likely due to local, non-native hydrophobic collapse. For these residues both the F(exch) <--> U(exch) conformational exchange process and the micros/ms exchange event within the U(exch) state contribute to the (15)N line width and can be analyzed using CPMG-based (15)N relaxation dispersion measurements. The contribution of both processes to the apparent relaxation rate can be deconvoluted numerically by combining the experimental (15)N relaxation dispersion data with results from an (15)N longitudinal relaxation experiment that accurately quantifies exchange rates in slow exchanging systems (Farrow, N. A.; Zhang, O.; Forman-Kay, J. D.; Kay, L. E. J. Biomol. NMR 1994, 4, 727-734). A simple, generally applicable analytical expression for the dependence of the effective transverse relaxation rate constant on the pulse spacing in CPMG experiments has been derived for a two-state exchange process in the slow exchange limit, which can be used to fit the experimental data on the global folding/unfolding transition. The results illustrate that relaxation dispersion experiments provide an extremely sensitive tool to probe conformational exchange processes in unfolded states and to obtain information on the free energy landscape of such systems.  相似文献   

8.
9.
Huntington's disease is a genetic neurodegenerative disorder caused by an expansion in a polyglutamine domain near the N‐terminus of the huntingtin (htt) protein that results in the formation of protein aggregates. Here, htt aggregate structure has been examined using hydrogen–deuterium exchange techniques coupled with tandem mass spectrometry. The focus of the study is on the 17‐residue N‐terminal flanking region of the peptide that has been shown to alter htt aggregation kinetics and morphology. A top‐down sequencing strategy employing electron transfer dissociation is utilized to determine the location of accessible and protected hydrogens. In these experiments, peptides aggregate in a deuterium‐rich solvent at neutral pH and are subsequently subjected to deuterium–hydrogen back‐exchange followed by rapid quenching, disaggregation, and tandem mass spectrometry analysis. Electrospray ionization of the peptide solution produces the [M + 5H]5+ to [M + 10H]10+ charge states and reveals the presence of multiple peptide sequences differing by single glutamine residues. The [M + 7H]7+ to [M + 9]9+ charge states corresponding to the full peptide are used in the electron transfer dissociation analyses. Evidence for protected residues is observed in the 17‐residue N‐terminal tract and specifically points to lysine residues as potentially playing a significant role in htt aggregation. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
Intraneuronal inclusions consisting of hypermetallated, (poly-)ubiquitinated proteins are a hallmark of neurodegeneration. To highlight the possible role played by metal ions in the dysfunction of the ubiquitin-proteasome system, here we report on zinc(II)/ubiquitin binding in terms of affinity constants, speciation, preferential binding sites and effects on protein stability and self-assembly. Potentiometric titrations allowed us to establish that at neutral pH only two species, ZnUb and Zn(2)Ub, are present in solution, in line with ESI-MS data. A change in the diffusion coefficient of ubiquitin was observed by NMR DOSY experiments after addition of Zn(II) ions, and thus indicates metal-promoted formation of protein assemblies. Analysis of (1)H, (15)N, (13)Cα and (13)CO chemical-shift perturbation after equimolar addition of Zn(II) ions to ubiquitin outlined two different metal-binding modes. The first involves a dynamic equilibrium in which zinc(II) is shared between a region including Met1, Gln2, Ile3, Phe4, Thr12, Leu15, Glu16, Val17, Glu18, Ile61 and Gln62 residues, which represent a site already described for copper binding, and a domain comprising Ile23, Glu24, Lys27, Ala28, Gln49, Glu51, Asp52, Arg54 and Thr55 residues. A second looser binding mode is centred on His68. Differential scanning calorimetry evidenced that addition of increasing amounts of Zn(II) ions does not affect protein thermal stability; rather it influences the shape of thermograms because of the increased propensity of ubiquitin to self-associate. The results presented here indicate that Zn(II) ions may interact with specific regions of ubiquitin and promote protein-protein contacts.  相似文献   

11.
Biosynthetic preparation and (19)F NMR experiments on uniformly 3-fluorotyrosine-labeled green fluorescent protein (GFP) are described. The (19)F NMR signals of all 10 fluorotyrosines are resolved in the protein spectrum with signals spread over 10 ppm. Each tyrosine in GFP was mutated in turn to phenylalanine. The spectra of the Tyr --> Phe mutants, in conjunction with relaxation data and results from (19)F photo-CIDNP (chemically induced dynamic nuclear polarization) experiments, yielded a full (19)F NMR assignment. Two (19)F-Tyr residues (Y92 and Y143) were found to yield pairs of signals originating from ring-flip conformers; these two residues must therefore be immobilized in the native structure and have (19)F nuclei in two magnetically distinct positions depending on the orientation of the aromatic ring. Photo-CIDNP experiments were undertaken to probe further the structure of the native and denatured states. The observed NMR signal enhancements were found to be consistent with calculations of the HOMO (highest occupied molecular orbital) accessibilities of the tyrosine residues. The photo-CIDNP spectrum of native GFP shows four peaks corresponding to the four tyrosine residues that have solvent-exposed HOMOs. In contrast, the photo-CIDNP spectra of various denatured states of GFP show only two peaks corresponding to the (19)F-labeled tyrosine side chains and the (19)F-labeled Y66 of the chromophore. These data suggest that the pH-denatured and GdnDCl-denatured states are similar in terms of the chemical environments of the tyrosine residues. Further analysis of the sign and amplitude of the photo-CIDNP effect, however, provided strong evidence that the denatured state at pH 2.9 has significantly different properties and appears to be heterogeneous, containing subensembles with significantly different rotational correlation times.  相似文献   

12.
从 6 0种球形蛋白质的结构出发 ,采用Miyazawa Jernigan相互作用矩阵 ,计算了蛋白质分子中氨基酸之间的相互作用能 .发现构成蛋白质分子的 2 0种氨基酸可分成疏水 (Hydrophobic ,H)、中性 (Neutral,N)、亲水(Hydrophilic ,P)基团 .在计算它们之间相互作用能的基础上 ,建立了蛋白质分子的HNP格点模型 .用这个模型计算了二维蛋白质分子在自然态 (Nativestate)时的构象性质 .同时研究了氨基酸序列为HHNHNPNHPP HPNPPHPHPPHHPHNH的折叠过程 ,得到其基态能量为 - 6 4 89RT .这能为研究球形蛋白质的构象性质及折叠过程提供一种更合理的格点模型  相似文献   

13.
A number of cross-linkers that are commonly used in polyacrylamide gels have been incubated with bovine beta-lactoglobulin B and the resulting reaction mixtures were examined by matrix assisted laser desorption/ionization-mass spectrometry. At concentrations of 0.1, 1, and 20 mM of each cross-linker incubated for 1 h with 50 pmol/microL of the protein, a reactivity scale can be expressed as polyethylene glycol diacrylate > N,N'-bisacrylylcystamine > bisacrylyl piperazine > N,N'-methylenebisacrylamide > N,N'-diallyltartardiamide (PEGDA>BAC>BAP>Bis>DATD). Relatively short incubation times indicated one of the five Cys residues as the target of reaction, which was confirmed by post-source decay measurements. Longer incubation times (24 h) with bisacrylamide extended the reaction to all five Cys residues and a number of Lys residues. A second consequence of longer reaction time is the involvement of both terminals of the cross-linker in the observed reaction. This experimental evidence is the first to demonstrate a different reactivity of both ends of one of the most commonly used cross-linkers. Investigation of solutions containing a cross-linker and acrylamide monomers provided useful information on the competition between the two identities for reaction with the protein. Possible implications of these experimental observations for isoelectric focusing separations in polyacrylamide gels are discussed.  相似文献   

14.
The selective (15)N isotope labeling was used for the identification of the nitrogen involved in a hydrogen bond formation with the semiquinone in the high-affinity Q(H) site in the cytochrome bo(3) ubiquinol oxidase. This nitrogen produces dominating contribution to X-Band (14)N ESEEM spectra. The 2D ESEEM (HYSCORE) experiments with the Q(H) site SQ in the series of selectively (15)N labeled bo(3) oxidase proteins have directly identified the N(epsilon) of R71 as an H-bond donor. In addition, selective (15)N labeling has allowed us for the first time to determine weak hyperfine couplings with the side-chain nitrogens from all residues around the SQ. Those are reflecting a distribution of the unpaired spin density over the protein in the SQ state of the quinone processing site.  相似文献   

15.
Hemophore HasA is a 19 kDa iron(III) hemoprotein that participates in the shuttling of heme to a specific membrane receptor. In HasA, heme iron has an original coordination environment with a His/Tyr pair as axial ligands. Recently developed two-dimensional protonless (13)C-detected experiments provide the sequence-specific assignment of all but three protein residues in the close proximity of the paramagnetic center, thus overcoming limitations due to the short relaxation times induced by the presence of the iron(III) center. Mono-dimensional (13)C and (15)N experiments tailored for the detection of paramagnetic signals allow the identification of resonances of the axial ligands. These experiments are used to characterize the conformational features and the electronic structure of the heme iron(III) environment. The good complementarity among (1)H-, (13)C-, and (15)N-detected experiments is highlighted. A thermal high-spin/low-spin equilibrium is observed and is related to a modulation of the strength of the coordination bond between the iron and the Tyr74 axial ligand. The key role of a neighboring residue, His82, for the stability of the axial coordination and its involvement in the heme delivery to the receptor is discussed.  相似文献   

16.
During SDS‐PAGE experiments, proteins generally display electrophoretic mobility in keeping with their molecular weights; however, some proteins display anomalies in mobility. Here, we focus attention on the anomalies displayed by the highly acidic ~110 residues‐long, sequence‐homologous, structurally‐analogous, extracellular domains of human E‐ and N‐cadherin. We report that there is a strong correlation between the acidity of each domain and the degree of the anomaly that it displays. The anomaly is only seen if the ratio of the numbers of negatively‐charged and positively‐charged residues is equal to or greater than the value of 1.50. The degree of the anomaly rises in proportion with this NC:PC ratio. Greater‐than‐expected anomalies are observed for domains containing dense clusters of negatively charged residues. A simple explanation for these observations is that highly acidic domains electrostatically repel SDS. This results in insufficient SDS binding, insufficient electromotive incentive and (consequently) lowered electrophoretic mobility. This explanation is in consonance with the current view that initial stages of SDS‐protein engagement tend to be dominated by electrostatics. We discuss the current anomalies within the broader context of all conceivable explanations for such anomalies.  相似文献   

17.
18.
A 7.6 ns molecular dynamics trajectory of the betaARK1 PH domain in explicit water with appropriate ions was calculated at 300 K. Spectral densities at omega = 0, omega(N), and 0.87omega(H) and the model-free parameters were evaluated from the experimental as well as the simulated data, taking the anisotropic overall motion of the protein into account. Experimental and simulated spectral densities are in reasonable general agreement for NH bond vectors, where the corresponding motions have converged within the simulation time. A sufficient sampling of the motions for NH bonds within flexible parts of the protein requires a longer simulation time. The simulated spectral densities J(0) and J(omega(N)) are, on average, 4.5% and 16% lower than the experimental data; the corresponding numbers for the core residues are about 6%; the high-frequency spectral densities J(0.87omega(H)) are lower by, on average, 16% (21% for the core). The simulated order parameters, S(2), are also lower, although the overall disagreement between the simulation and experiment is less pronounced: 1% for all residues and 6% for the core. The observed systematic decrease of simulated spectral density and the order parameters compared to the experimental data can be partially attributed to the ultrafast librational motion of the NH bonds with respect to their peptide plane, which was analyzed in detail. This systematic difference is most pronounced for J(0.87omega(H)), which appears to be most sensitive to the slow, subnanosecond time scale of internal motion, whereas J(0) and J(omega(N)) are dominated by the overall rotational tumbling of the protein. Similar discrepancies are observed between the experimentally measured (15)N relaxation parameters (R(1), R(2), NOE) and their values calculated from the simulated spectral densities. The analysis of spectral densities provides additional information regarding the comparison of the simulated and experimental data, not available from the model-free analysis.  相似文献   

19.
The recent study on the *OH-induced oxidation of calmodulin, a regulatory "calcium sensor" protein containing nine methionine (Met) residues, has supported the first experimental evidence in a protein for the formation of S therefore N three-electron bonded radical complexes involving the sulfur atom of a methionine residue and the amide groups in adjacent peptide bonds. To characterize reactions of oxidized methionine residues in proteins containing multiple methionine residues in more detail, in the current study, a small model cyclic dipeptide, c-(L-Met-L-Met), was oxidized by *OH radicals generated via pulse radiolysis and the ensuing reactive intermediates were monitored by time-resolved UV-vis spectroscopic and conductometric techniques. The picture that emerges from this investigation shows there is an efficient formation of the Met (S therefore N) radicals, in spite of the close proximity of two sulfur atoms, located in the side chains of methionine residues, and in spite of the close proximity of sulfur atoms and oxygen atoms, located in the peptide bonds. Moreover, it is shown, for the first time, that the formation of Met(S therefore N) radicals can proceed directly, via H+-transfer, with the involvement of hydrogen from the peptide bond to an intermediary hydroxysulfuranyl radical. Ultimately, the Met(S therefore N) radicals decayed via two different pH-dependent reaction pathways, (i) conversion into sulfur-sulfur, intramolecular, three-electron-bonded radical cations and (ii) a proposed hydrolytic cleavage of the protonated form of the intramolecular, three-electron-bonded radicals [Met(S therefore N)/Met(S therefore NH)+] followed by electron transfer and decarboxylation. Surprisingly, also alpha-(alkylthio)alkyl radicals enter the latter mechanism in a pH-dependent manner. Density functional theory computations were performed on the model c-(L-Met-Gly) and its radicals in order to obtain optimizations and energies to aid in the interpretation of the experiments on c-(L-Met-L-Met).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号