首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For the first time, bamboo-shaped multiwalled carbon nanotubes, having diameter of the order of 50 nm, have been grown on carbon black in a fluidized bed in bulk amount. The activation energy for the synthesis of the product was found out to be around 33 kJ/mol in the temperature range of 700−900 °C. The carbon nanotubes were separated from the carbon black by preferential oxidation of the later, the temperature of which was determined by thermogravimetry. The transmission electron microscopy revealed different features of the nanotubes such as “Y” junction, bend, and catalyst filling inside the nanotubes. Small angle neutron scattering was performed on the nanotubes synthesized at different temperatures. The data were fitted into a suitable model in order to find out the average diameter, which decreases with increase in synthesis temperature. The Monte Carlo simulation predicts the same behavior. Based on the above observations, a possible growth mechanism has been predicted. The oscillation in carbon saturation value inside the catalyst in the fluidized bed has been indicated as the responsible factor for the bamboo-shaped structure.  相似文献   

2.
固体单相催化剂CVD法制备成束或分散MWCNT*   总被引:1,自引:0,他引:1  
CVD法制备纳米碳管的催化剂多是以Al2 O3、SiO2 或MgO作载体 ,Fe、Ni或Co等过渡族金属为活性组分[1- 3] .催化剂与载体之间的关系存在多种形式[1] ,其中固溶体催化剂[4 ,5] 使过渡金属离子能均匀地分布在载体的内部和表面 .在后续反应过程中 ,均匀分布在表面或体内的金属离子被还原成具有催化活性的金属微粒 .此法称为“原位催化分解法 (insituCVD法 )” ,常用于制备直径分布较为均匀的纳米碳管 ,但以往的这些固溶体催化剂在制备纳米碳管的产量上并没有明显的改善 .本工作报道用燃烧法制备的Fe Mo Mg O固溶体 ,不但在用于CVD法生长…  相似文献   

3.
Carbon nanotubes are prepared by the method of self-propagating high-temperature synthesis for the first time. The initial components for this synthesis are carboniferous materials (soda, limestone, and Teflon) and reducers (magnesium, lithium, and sodium) with addition of a nickel or iron catalyst. The morphology of the nanotubes (straight multiwall nanotubes apparently free of a catalyst, bent nanotubes completely filled with a catalyst, and carbon nanofibers) is similar to that of nanotubes grown by chemical methods. The nanotubes account for 2–4 wt % of the product synthesized.  相似文献   

4.
Carbon nanotubes have been synthesized by catalytic chemical vapour deposition of acetylene diluted with argon using three different catalysts, namely, nickel formate, cobalt formate and ferrocene. The synthesis was carried out at 700°C in a quartz reactor for 30 minutes. Thermal analysis was carried out in order to determine the yield of the nanotube. It was found that the deposit contains 86% nanotube, with nickel-based catalyst, which was the maximum. The yield of nanotube was 71 times that of the nickel loading. The TEM images reveal helical type of nanotubes with iron catalyst while cobalt and nickel catalysts yielded straight nanotubes. This technique can be explored for the bulk production of carbon nanotube in an economic way.  相似文献   

5.
Iron filled carbon nanotubes have been widely used for numerous applications due to their remarkable magnetic and structural properties. One very important example is the biomedical application, where iron filled multiwalled carbon nanotubes (Fe-MWCNT) can be used in anticancer therapies, acting as local nano-heaters, at the cellular level. Regarding this aim the systematic study of the Fe-MWCNT preparation was required. Therefore, in this contribution a chemical vapour deposition (CVD) process was employed to perform a comparative study on Fe-MWCNT synthesis using two carbon feedstock (cyclohexane and ethanol), and different catalyst mixtures. The homogeneity, filling ratio, and purity of the samples were analysed, and the optimal conditions for the bulk sample preparation were achieved. The samples were characterised concerning their quality, diameter range, number of walls, and amount of iron encapsulated in the nanotubes cavity. The characterisation was performed using Raman spectroscopy, transmission electron microscopy (TEM), and thermogravimetric analysis (TGA).  相似文献   

6.
In situ synthesis of nanocomposites based on carbon nanotubes and zeolite/montmorillonite was carried out in a hot filament CVD reactor where the precursors (methane and hydrogen) are activated by carbonized tungsten filaments heated up to 2200 °C. In nanocomposites formed both on zeolite and montmorillonite we observed cross-linking of the catalytic particles by nanotubes and creation of carbon nanotube bridges and three-dimensional networks. The length of nanotube bridges was in a range from several nm to nearly 10 μm. A high density of carbon nanotubes was observed in the whole volume of zeolite. The high catalytic efficiency of zeolite is most likely caused by its structure that allows anchoring of Fe3+ catalytic particles in the pores and prevents their migration from the sample. At the ends of the nanotubes grown on zeolite we observed particles of the catalyst. In montmorillonite, the particles catalyzing the growth of carbon nanotubes may be present not only on the external surface but also in the interlayer voids of the mineral. Its catalytic efficiency is enhanced as proved by the higher amount of CNTs and their bundles. In the course of CNTs synthesis probably also clumps of Fe3+ catalytic particles arise, which may be the reason for formation of bundles of nanotubes.  相似文献   

7.
The effect of Fe and Ni catalysts on the synthesis of carbon nanotubes (CNTs) using atmospheric pressure chemical vapor deposition (APCVD) was investigated. Field emission scanning electron microscopy (FESEM) analysis suggests that the samples grow through a tip growth mechanism. High-resolution transmission electron microscopy (HRTEM) measurements show multiwalled carbon nanotubes (MWCNTs) with bamboo structure for Ni catalyst while iron filled straight tubes were obtained with the Fe catalyst. The X-ray diffraction (XRD) pattern indicates that nanotubes are graphitic in nature and there is no trace of carbide phases in both the cases. Low frequency Raman analysis of the bamboo-like and filled CNTs confirms the presence of radial breathing modes (RBM). The degree of graphitization of CNTs synthesized from Fe catalyst is higher than that from Ni catalyst as demonstrated by the high frequency Raman analysis. Simple models for the growth of bamboo-like and tubular catalyst filled nanotubes are proposed.  相似文献   

8.
A novel ammonia synthesis catalyst, alkali-promoted ruthenium supported on multi-walled nanotubes (MWNT), has been developed. Various alkali-promoters and carbon-based supports were compared. The effects of the contents of Ru and K, the treatment of MWNT, and the reaction temperature on ammonia synthesis activity were investigated. It was found that, as a support, the MWNT is much better than other carbon-based supports. The yield of NH3 was 47.423 ml NH3/h g-cat at 693 K, at atmospheric pressure and N2/3H2 flow-rate of 1800 ml/h for the catalyst with K/Ru/MWNT = 4/4/100 (w/w).  相似文献   

9.
Spray pyrolysis chemical vapor deposition (CVD) in the absence of hydrogen at low carrier gas flow rates has been used for the growth of carbon nanotubes (CNTs). A parametric study of the carbon nanotube growth has been conducted by optimizing various parameters such as temperature, injection speed, precursor volume, and catalyst concentration. Experimental observations and characterizations reveal that the growth rate, size and quality of the carbon nanotubes are significantly dependent on the reaction parameters. Scanning electron microscopy, transmission electron microscopy, and Raman spectroscopy techniques were employed to characterize the morphology, structure and crystallinity of the carbon nanotubes. The synthesis process can be applied to both semiconducting silicon wafer and conducting substrates such as carbon microfibers and stainless steel plates. This approach promises great potential in building various nanodevices with different electron conducting requirements. In addition, the absence of hydrogen as a carrier gas and the relatively low synthesis temperature (typically 750 °C) qualify the spray pyrolysis CVD method as a safe and easy way to scale up the CNT growth, which is applicable in industrial production.  相似文献   

10.
In the synthesis of carbon nanotubes from ethylene decomposition by a Fe/Mo/Al2O3 catalyst at 823 K, the long and continuous coaxial carbon-metal nanowires up to 540 nm is observed. And for the first time, it is observed that the coaxial carbon-metal nanowires can grow in tip and base growth mode simultaneously. A detailed formation mechanism is proposed, where the aggregation of metal particles, lift-up of nanotubes obeying different growth modes and the deformation of metal particles by nanotubes are considered as the necessary steps for the formation of the nanowires.  相似文献   

11.
燃烧法合成碳纳米管的实验方案设计   总被引:2,自引:0,他引:2  
碳纳米管是一种新型的碳材料,其合成方法多种多样。燃烧法是一种新兴的合成方法,燃烧过程提供用于碳纳米管生长的高温环境,同时也提供足够的烃原料。目前,用于合成碳纳米管的原料包括气体燃料和液体燃料,火焰类型主要有层流扩散火焰、逆流扩散火焰和预混火焰等。影响炭纳米管火焰合成的因素主要有气体成分,温度,催化剂,燃氧比和采样条件。我们采用甲烷扩散火焰用于实验研究炭纳米管的合成条件。实验系统包括扩散火焰喷嘴,混和段,质量流量计,取样探针和基板,气源。内径5 mm的喷嘴与内径100 mm的钢筒同轴。实验测得在气量为0.20 SLM时火焰高度为 3.5 cm。涂覆有催化剂的基板水平朝下置于火焰中采样,并将采集的样品进行电镜分析。本文还对燃烧法合成碳纳米管的机理进行了分析。  相似文献   

12.
In this contribution we present a dc thermal plasma jet route for the continuous synthesis of single- and multi- walled carbon nanotubes. Our findings show the as produced product to be dependent on the plasma atmosphere and catalyst. Multi walled carbon nanotubes can be synthesized without a catalyst. Single walled carbon nanotubes require the presence of a catalyst (Ni-Ce) and the addition of hydrogen to the buffer gas. Increasing the amount of hydrogen added to the reaction significantly improves the nanotube yield. PACS 81.07.De; 36.40.Gk; 63.50.+x; 68.37.Lp; 68.37.Hk  相似文献   

13.
A novel technique for synthesis of single-walled carbon nanotubes (SWNTs) in diffusion flames is presented, as is a diagnostic tool that can provide online information about nanotube size, number density, and purity. An inverse diffusion flame with a high stoichiometric mixture fraction (Zst) is used to produce SWNTs with an average length of 1 μm. The high Zst flame allows nanotubes to be produced in a fuel-rich region that is void of soot and polycyclic aromatic hydrocarbons (PAH). In addition, by operating as an inverse diffusion flame the carbon nanotubes (CNTs) are not exposed to oxygen and thus, can be collected downstream. Consequently, this flame provides a potential approach to large-scale synthesis of pure SWNTs. In addition, a differential mobility analyzer (DMA) is employed as an online diagnostic tool. The DMA can distinguish between excess catalyst particles and CNTs due to the differences in their electrical mobilities. Thus, the presence of CNTs as well as their size, number density, and purity relative to excess catalyst particles can be identified from the size distribution of the aerosol sampled downstream of the flame. This tool allows for rapid identification of the effect of changing process variables on nanotube growth and thus, the production process can be quickly optimized.  相似文献   

14.
Flame synthesis of single-walled carbon nanotubes   总被引:1,自引:0,他引:1  
Flames offer potential for synthesis of carbon nanotubes in large quantities at considerably lower costs than that of other methods currently available. This study aims to examine conditions for carbon nanotube formation in premixed flames and to characterize the morphology of solid carbon deposits and their primary formation mechanisms in the combustion environment. Single-walled nanotubes have been observed in the post-flame region of a premixed acetylene/oxygen/15 mol% argon flame operated at 6.7 kPa with Fe(CO)5 vapor used as a source of metallic catalyst necessary for nanotube growth. Thermophoretic sampling and transmission electron microscopy were used to characterize the solid material present in the flame at various heights above burner (HAB), giving a resolution of formation dynamics within the flame system. Catalyst particle formation and growth is observed to dominate the immediate post-flame region (10–40 mm HAB). Nanotubes were observed to be present after 40 mm HAB with nanotube inception occurring as early as 30 mm HAB. Between 40 and 70 mm HAB, nanotubes are observed to coalesce into clusters. A nanotube formation ‘window’ is evident with formation limited to fuel equivalence ratios between 1.5 and 1.9. A continuum of morphologies ranging from relatively clean clusters of nanotubes to amorphous material is observed between these lower and upper limits. High-resolution TEM and Raman spectroscopy revealed nanotube bundles with each nanotube being single-walled with diameters between 0.9 and 1.5 nm.  相似文献   

15.
用微米级LaNi5合金粉末为催化剂, 以乙炔为原料, 采用化学气相沉积(CVD)法合成了多壁碳纳米管. 在100~290 K温度下测量了41 μm≤d≤150 μm粒径催化剂制备的不同直径分布的碳纳米管的电子自旋共振(ESR)谱,研究了测量温度、微米级催化剂粒径及制备过程的氢气氛对生成的碳纳米管的ESR谱线型、g因子、线宽的影响. 发现碳纳米管的g因子随其直径的增大而增大,分别为2.040 0(催化剂粒径41 μm≤d≤50 μm, 碳纳米管的直径分布为10 nm到20 nm)和2.089 8(催化剂粒径100 μm≤d≤150 μm,碳纳米管的直径分布为70 nm到120 nm). 发现小管径纳米管的ESR谱图有一个峰, 而大管径纳米管的ESR谱图有两个峰A和B, 且随测量温度的升高, 峰B强度增大.  相似文献   

16.
We report a simple way to synthesize carbon nanotubes and nanostructures from the solid phase. Vacuum annealing of diamond-like carbon (DLC) films or polyethylene mixed with catalyst in argon atmosphere leads to the formation of nanotubes and nanostructures. High-resolution transmission electron microscopy studies reveal highly graphitized multi-walled nanotubes (MWNTs) or amorphous fibre-like structures, depending on the catalyst amount. This synthesis process may give a new approach to understanding the phase transition of different carbon allotropes into nanotubes or nanostructures. Received: 3 July 2001 / Accepted: 3 July 2001 / Published online: 2 October 2001  相似文献   

17.
A model is constructed for the growth of nanotubes from metal catalyst particles supersaturated with carbon. An island of the graphene plane on the catalyst surface serves as a nucleus for the formation of nanotubes with different morphologies. The dependence of the type of nanotube nucleating from an island on the catalyst particle size and the minimum number of carbon-metal interaction parameters is determined. These parameters are calculated using the semiempirical quantum-chemical methods. The results of calculations in the framework of the proposed model are compared with the experimental data obtained for the simultaneous formation of nanotubes of several types.  相似文献   

18.
This paper reviews transmission electron microscopy studies, combining high resolution imaging and electron energy loss spectroscopy, of the nucleation and growth of carbon single wall nanotubes with a particular emphasis on the nanotubes obtained from the evaporation-based elaboration techniques. Inspection of samples obtained from different synthesis routes shows that in all cases nanotubes are found to emerge from catalyst particles and that they have grown perpendicular or parallel to the surface according to whether they have been synthesized via evaporation-based methods or CCVD methods. Whereas the latter case corresponds to the well-known situation of carbon filaments growth, the former case strongly suggests another formation and growth process, which is described and its different steps discussed in detail. In this model, formation of the nanotubes proceeds via solvation of carbon into liquid metal droplets, followed by precipitation, at the surface of the particles, of excess carbon in the form of nanotubes through a nucleation and root growth process. It is argued that the nucleation of the nanotubes, which compete with the formation of graphene sheets wrapping the surface of the particle, necessarily results from a surface instability induced by the conditions of segregation. The nature and the origin of this instability was studied in the case of the class of catalyst Ni–R.E. (R.E.=Y, La, Ce, …) in order to identify the influence of the nature of the catalyst. The respective roles played by Ni and R.E. have been identified. It is shown that carbon and rear-earth co-segregate and self-assemble at the surface of the particle in order to form a surface layer destabilizing the formation of graphene sheets and providing nucleation sites for nanotubes growing perpendicular to the surface. To cite this article: A. Loiseau et al., C. R. Physique 4 (2003).  相似文献   

19.
The investigation of the catalyst active component formation during multi-walled carbon nanotube (MWCNT) synthesis was carried out by means of in situ and ex situ synchrotron radiation X-ray diffraction. The data on phase composition transformations obtained with 1 s time-resolution allows optimization the carbon nanotubes synthesis in industrial fluidized bed reactors.  相似文献   

20.
Synthesis of carbon nanotubes described in the present work is based on activation of methane in a hot filament CVD reactor and subsequent creation of nanostructures on a catalyst pre-treated polished surface of silicon. An essential step of the synthesis is the use of natural minerals as catalysts. We have studied the catalyst parameters, the way of its application and the amount of Fe3+ cations on the surface of aluminosilicates on the quality of the grown nanotube layers. The growth of carbon nanotubes catalyzed by montmorillonite and zeolite (clinoptilolite) was confirmed by scanning electron microscopy and Raman spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号