首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Typically 31P in vivo magnetic resonance spectroscopic studies are limited by SNR considerations. Although phased arrays can improve the SNR; to date 31P phased arrays for high-field systems have not been combined with 31P volume transmit coils. Additionally, to provide anatomical reference for the 31P studies, without removal of the coil or patient from the magnet, double-tuning (31P/1H) of the volume coil is required. In this work we describe a series of methods for active detuning and decoupling enabling use of phased arrays with double-tuned volume coils. To demonstrate these principles we have built and characterized an actively detuneable 31P/1H TEM volume transmit/four-channel 31P phased array for 4 T magnetic resonance spectroscopic imaging (MRSI) of the human brain. The coil can be used either in volume-transmit/array-receive mode or in TEM transmit/receive mode with the array detuned. Threefold SNR improvement was obtained at the periphery of the brain using the phased array as compared to the volume coil.  相似文献   

2.
A 3 T MLEV-point-resolved spectroscopy (PRESS) sequence employing optimized spectral-spatial and very selective outer-voxel suppression pulses was tested in 25 prostate cancer patients. At an echo time of 85 ms, the MLEV-PRESS sequence resulted in maximally upright inner resonances and minimal outer resonances of the citrate doublet of doublets. Magnetic resonance spectroscopic imaging (MRSI) exams performed at both 3 and 1.5 T for 10 patients demonstrated a 2.08+/-0.36-fold increase in signal-to-noise ratio (SNR) at 3 T as compared with 1.5 T for the center citrate resonances. This permitted the acquisition of MRSI data with a nominal spatial resolution of 0.16 cm3 at 3 T with similar SNR as the 0.34-cm3 data acquired at 1.5 T. Due to the twofold increase in spectral resolution at 3 T and the improved magnetic field homogeneity provided by susceptibility-matched endorectal coils, the choline resonance was better resolved from polyamine and creatine resonances as compared with 1.5 T spectra. In prostate cancer patients, the elevation of choline and the reduction of polyamines were more clearly observed at 3 T, as compared with 1.5 T MRSI. The increased SNR and corresponding spatial resolution obtainable at 3 T reduced partial volume effects and allowed improved detection of the presence and extent of abnormal metabolite levels in prostate cancer patients, as compared with 1.5 T MRSI.  相似文献   

3.
Ultra-high-field 7 T magnetic resonance (MR) scanners offer the potential for greatly improved MR spectroscopic imaging due to increased sensitivity and spectral resolution. Prior 7 T human single-voxel MR Spectroscopy (MRS) studies have shown significant increases in signal-to-noise ratio (SNR) and spectral resolution as compared to lower magnetic fields but have not demonstrated the increase in spatial resolution and multivoxel coverage possible with 7 T MR spectroscopic imaging. The goal of this study was to develop specialized radiofrequency (RF) pulses and sequences for three-dimensional (3D) MR spectroscopic imaging (MRSI) at 7 T to address the challenges of increased chemical shift misregistration, B1 power limitations, and increased spectral bandwidth. The new 7 T MRSI sequence was tested in volunteer studies and demonstrated the feasibility of obtaining high-SNR phased-array 3D MRSI from the human brain.  相似文献   

4.
The use of multi-channel coils can efficiently increase the signal-to-noise ratio (SNR) of magnetic resonance spectroscopy data if the signals from multiple channels are optimally combined. Combining multi-channel signals requires proper alignment of the phases of the signals from each of the elements of the coil and then accurately weighting the summation of those signals. We present a procedure for acquiring proton magnetic resonance spectroscopic imaging (MRSI) data using an eight-channel coil without water suppression and a rapid and robust method that uses unsuppressed water signal as a reference both for aligning the phases and for weighting the summation of signals that originate in the multiple coil elements. We use both computer simulation and in vivo proton MRSI data to demonstrate the advantages of our method for optimizing the SNR of the combined signal compared with the SNRs of signals that were acquired either using a standard volume head coil or using an eight-channel coil with a metabolite signal as the reference for combination.  相似文献   

5.
Truncation artifacts arise in magnetic resonance spectroscopic imaging (MRSI) of the human brain due to limited coverage of k-space necessitated by low SNR of metabolite signal and limited scanning time. In proton MRSI of the head, intense extra-cranial lipid signals “bleed” into brain regions, thereby contaminating signals of metabolites therein. This work presents a data acquisition strategy for reducing truncation artifact based on extended k-space coverage achieved with a dual-SNR strategy. Using the fact that the SNR in k-space increases monotonically with sampling density, dual-SNR is achieved in an efficient manner with a dual-density spiral k-space trajectory that permits a smooth transition from high density to low density. The technique is demonstrated to be effective in reducing “bleeding” of extra-cranial lipid signals while preserving the SNR of metabolites in the brain.  相似文献   

6.

Purpose

To develop a method for estimating metabolite concentrations using phased-array coils and sensitivity-encoded (SENSE) magnetic resonance spectroscopic images (MRSI) of the human brain.

Materials and Methods

The method is based on the phantom replacement technique and uses receive coil sensitivity maps and body-coil loading factors to account for receive B1 inhomogeneity and variable coil loading, respectively. Corrections for cerebrospinal fluid content from the MRSI voxel were also applied, and the total protocol scan time was less than 15 min. The method was applied to 10 normal human volunteers using a multislice 2D-MRSI sequence at 3 T, and seven different brain regions were quantified.

Results

N-Acetyl aspartate (NAA) concentrations varied from 9.7 to 14.7 mM, creatine (Cr) varied from 6.6 to 10.6 mM and choline (Cho) varied from 1.6 to 3.0 mM, in good general agreement with prior literature values.

Conclusions

Quantitative SENSE-MRSI of the human brain is routinely possible using an adapted phantom-replacement technique. The method may also be applied to other MRSI techniques, including conventional phase encoding, with phased-array receiver coils, provided that coil sensitivity profiles can be measured.  相似文献   

7.

Purpose

To investigate intracranial microvascular images with transceiver radio-frequency (RF) coils at ultra-high field 7 T magnetic resonance imaging (MRI).

Materials and methods

We designed several types of RF coils for the study of 7 T magnetic resonance angiography and analyzed quantitatively each coil's performance in terms of the signal-to-noise ratio (SNR) profiles to evaluate the usefulness of RF coils for microvascular imaging applications. We also obtained the microvascular images with different resolutions and parallel imaging technique.

Results

The overlapped 6-channel (ch) transceiver coil exhibited the highest performance for angiographic imaging. Although other multi-channel coils, such as 4- or 8-ch, were also suitable for fast imaging, these coils performed poorly in homogeneity or SNR for angiographic imaging. Furthermore, the 8-ch coil was poor in SNR at the center of the brain, while it had the highest SNR at the periphery.

Conclusion

The present study has demonstrated that the overlapped 6-ch coil with large-size loop coils provided the best performance for microvascular imaging or angiography with the ultra-high-field 7 T MRI, mainly because of its long penetration depth together with high SNR.  相似文献   

8.
The purpose of this study was to assess the benefits of a 3 T scanner and an eight-channel phased-array head coil for acquiring three-dimensional PRESS (Point REsolved Spectral Selection) proton (H-1) magnetic resonance spectroscopic imaging (MRSI) data from the brains of volunteers and patients with brain tumors relative to previous studies that used a 1.5 T scanner and a quadrature head coil. Issues that were of concern included differences in chemical shift artifacts, line broadening due to increased susceptibility at higher field strengths, changes in relaxation times and the increased complexity of the postprocessing software due to the need for combining signals from the multichannel data. Simulated and phantom spectra showed that very selective suppression pulses with a thickness of 40 mm and an overpress factor of at least 1.2 are needed to reduce chemical shift artifact and lipid contamination at higher field strengths. Spectral data from a phantom and those from six volunteers demonstrated that the signal-to-noise ratio (SNR) in the eight-channel coil was more than 50% higher than that in the quadrature head coil. For healthy volunteers and eight patients with brain tumors, the SNR at 3 T with the eight-channel coil was on average 1.5 times higher relative to the eight-channel coil at 1.5 T in voxels from normal-appearing brains. In combination with the effect of a higher field strength, the use of the eight-channel coil was able to provide an increase in the SNR of more than 2.33 times the corresponding acquisition at 1.5 T with a quadrature head coil. This is expected to be critical for clinical applications of MRSI in patients with brain tumors because it can be used to either decrease acquisition time or improve spatial resolution.  相似文献   

9.
Copper foil has been widely employed in conventional radio frequency (RF) birdcage coils for magnetic resonance imaging (MRI). However, for ultrahigh-field (UHF) MRI, current density distribution on the copper foil is concentrated on the surface and the edge due to proximity effect. This increases the effective resistance and distorts the circumferential sinusoidal current distribution on the birdcage coils, resulting in low signal-to-noise ratio (SNR) and inhomogeneous distribution of RF magnetic (B1) field. In this context, multiple parallel round wires were proposed as legs of a birdcage coil to optimize current density distribution and to improve the SNR and the B1 field homogeneity. The design was compared with three conventional birdcage coils with different width flat strip surface legs for a 9.4 T (T) MRI system, e.g., narrow-leg birdcage coil (NL), medium-leg birdcage coil (ML), broad-leg birdcage coil (BL) and the multiple parallel round wire-leg birdcage coil (WL). Studies were carried out in in vitro saline phantom as well as in vivo mouse brain. WL showed higher coil quality factor Q and more homogeneous B1 field distribution compared to the other three conventional birdcage coils. Furthermore, WL showed 12, 10 and 13% SNR increase, respectively, compared to NL, ML and BL. It was proposed that conductor’s shape optimization could be an effective approach to improve RF coil performance for UHF MRI.  相似文献   

10.
Applications of low-field magnetic resonance imaging (MRI) systems (<0.3 T) are limited due to the signal-to-noise ratio (SNR) being lower than that provided by systems based on superconductive magnets (≥1.5 T). Therefore, the design of radiofrequency (RF) coils for low-field MRI requires careful consideration as significant gains in SNR can be achieved with the proper design of the RF coil. This article describes an analytical method for the optimization of solenoidal coils. Coil and sample losses are analyzed to provide maximum SNR and optimum B1 field homogeneity. The calculations are performed for solenoidal coils optimized for the human head at 0.2 T, but the method could also be applied to any solenoidal coil for imaging other anatomical regions at low field. Several coils were constructed to compare experimental and theoretical results. A head magnetic resonance image obtained at 0.2 T with the optimum design is presented.  相似文献   

11.
The layout of radio-frequency received coils is related to signal-to-noise ratio (SNR) in magnetic resonance imaging (MRI). In this paper, different structures of four-channel received coil arrays for vertical-field MRI are constructed and optimized by establishing the relationship between coil geometry and SNR to achieve a high SNR and a uniform SNR distribution in the region of interest (ROI). Then, the SNR distributions of three optimized configurations, including rectangular loops, non-definite shape surface coils, and solenoid loops as the main unit, are simulated and compared. The four-channel coil of solenoid loops as the main unit has been found to have the best performance with the highest mean SNR in the ROI when imaging without acceleration. In addition, g-factor and 2D SENSE SNR in yoz-plane are simply analyzed, which show a sharp decrease in SNR for all the coils. Finally, all the coils are manufactured and operated at a 0.5 T permanent magnet MRI system with phantom and joint imaging experiments. Using pixel-by-pixel manner to evaluate SNR map, the experimental results are consistent with the simulation results, while parallel imaging experiment results show that the major consideration in low field MRI is the improvement of SNR value and uniformity rather than that of the imaging speed. As different constructions of four-channel received coils are investigated, we have found the most effective configuration with high and uniform SNR for vertical-field MRI.  相似文献   

12.
Spectral analysis of multichannel MRS data   总被引:2,自引:0,他引:2  
The use of phased-array receive coils is a well-known technique to improve the image quality in magnetic resonance imaging studies of, e.g., the human brain. It is common to incorporate proton (1H) magnetic resonance spectroscopy (MRS) experiments in these studies to quantify key metabolites in a region of interest. Detecting metabolites in vivo is often difficult, requiring extensive scans to achieve signal-to-noise ratios (SNR) that provide suitable diagnostic results. Combining the MR absorption spectra obtained from several receive coils is one possible approach to increase the SNR. Previous literature does not give a clear overview of the wide range of possible approaches that can be used to combine MRS data from multiple detector coils. In this paper, we consider the multicoil MRS approach and introduce several signal processing tools to address the problem from different nonparametric, semiparametric, and parametric perspectives, depending on the amount of available prior knowledge about the data. We present a numerical study of these tools using both simulated 1H MRS data and experimental MRS data acquired from a 3T MR scanner.  相似文献   

13.
Decrease of the human brain temperature was induced by intranasal cooling. The main purpose of this study was to compare the two magnetic resonance methods for monitoring brain temperature changes during cooling: phase-difference and magnetic resonance spectroscopic imaging (MRSI) with high spatial resolution. Ten healthy volunteers were measured. Selective brain cooling was performed through nasal cavities using saline-cooled balloon catheters. MRSI was based on a radiofrequency spoiled gradient echo sequence. The spectral information was encoded by incrementing the echo time of the subsequent eight image records. Reconstructed voxel size was 1×1×5 mm3. Relative brain temperature was computed from the positions of water spectral lines. Phase maps were obtained from the first image record of the MRSI sequence. Mild hypothermia was achieved in 15–20 min. Mean brain temperature reduction varied in the interval <−3.0; − 0.6>°C and <−2.7; − 0.7>°C as measured by the MRSI and phase-difference methods, respectively. Very good correlation was found in all locations between the temperatures measured by both techniques except in the frontal lobe. Measurements in the transversal slices were more robust to the movement artifacts than those in the sagittal planes. Good agreement was found between the MRSI and phase-difference techniques.  相似文献   

14.
Several algorithms for automatic frequency alignment and quantitation of single resonances in multiple magnetic resonance (MR) spectra are investigated. First, a careful comparison between the complex principal component analysis (PCA) and the Hankel total least squares-based methods for quantifying the resonances in the spectral sets of magnetic resonance spectroscopy imaging (MRSI) spectra is presented. Afterward, we discuss a method based on complex PCA plus linear regression and a method based on cross correlation of the magnitude spectra for correcting frequency shifts of resonances in sets of MR spectra. Their advantages and limitations are demonstrated on simulated MR data sets as well as on an in vivo MRSI data set of the human brain.  相似文献   

15.
This study investigated the value of information from both magnetic resonance imaging and magnetic resonance spectroscopic imaging (MRSI) to automated discrimination of brain tumours. The influence of imaging intensities and metabolic data was tested by comparing the use of MR spectra from MRSI, MR imaging intensities, peak integration values obtained from the MR spectra and a combination of the latter two. Three classification techniques were objectively compared: linear discriminant analysis, least squares support vector machines (LS-SVM) with a linear kernel as linear techniques and LS-SVM with radial basis function kernel as a nonlinear technique. Classifiers were evaluated over 100 stratified random splittings of the dataset into training and test sets. The area under the receiver operating characteristic (ROC) curve (AUC) was used as a global performance measure on test data. In general, all techniques obtained a high performance when using peak integration values with or without MR imaging intensities. For example for low- versus high-grade tumours, low- versus high-grade gliomas and gliomas versus meningiomas, the mean test AUC was higher than 0.91, 0.94, and 0.99, respectively, when both MR imaging intensities and peak integration values were used. The use of metabolic data from MRSI significantly improved automated classification of brain tumour types compared to the use of MR imaging intensities solely.  相似文献   

16.
活体多片磁共振谱成像(MRSI)产生大量的波谱数据,因此需要使用自动的谱数据分析方法来获得不同组织代谢产物的定量分布图.然而,活体波谱通常产生严重的谱和基线变形,使得基于曲线拟合的谱定量数据分析方法失效.该文应用多尺度分析(Multiscale)方法自动确定兴趣代谢物在频率空间的谱峰特征(位置和线宽),然后通过叠代运算对该代谢物对应的谱峰进行独立的自动相位矫正和线型拟合.大脑波谱成像的实验结果表明,该方法可以方便、有效的获得代谢产物在大脑的分布,特别适宜于多片磁共振谱成像的代谢产物定量分析.  相似文献   

17.
Cardiac metabolism assessment with hyperpolarized 13C magnetic resonance spectroscopy in pig models requires the design of dedicated coils capable of providing large field of view with high signal-to-noise ratio (SNR) data. This work presents a comparison between a commercial 13C quadrature birdcage coil and a homebuilt 13C circular coil both designed for hyperpolarized studies of pig heart with a clinical 3T scanner. In particular, the simulation of the two coils is described by developing an SNR model for coil performance prediction and comparison. While coil resistances were calculated from Ohm’s law, the magnetic field patterns and sample-induced resistances were calculated using a numerical finite-difference time-domain algorithm. After the numerical simulation of both coils, the results are presented as SNR-versus-depth profiles using experimental SNR extracted from the [1-13C]acetate phantom chemical shift image and with a comparison of metabolic maps acquired by hyperpolarized [1-13C]pyruvate injected in a pig. The accuracy of the developed SNR models was demonstrated by good agreement between the theoretical and experimental coil SNR-versus-depth profiles.  相似文献   

18.
当采用正交线圈来提高接收通道的性能时,合成方法对整体效果有很大的影响. 由于在一般情况下正交线圈的2个线圈的信噪比存在不平衡,故需要采用加权合成的方法来优化合成图像的信噪比. 在现有的模拟合成方法中,加权系数是固定的,不能根据每次扫描的实际情况来确定最优的参数,因此无法得到最佳的合成效果. 该文提出一种简单的磁共振正交线圈成像的数字合成方法,它采用2个完全独立的接收通道来采集磁共振信号,根据两通道信号的特性来动态地确定I/Q线圈的加权因子,最后进行加权合成.  相似文献   

19.
PurposeVisual review of individual spectra in magnetic resonance spectroscopic imaging (MRSI) data benefits from the application of spectral smoothing; however, if this processing step is applied prior to spectral analysis this can impact the accuracy of the quantitation. This study aims to analyze the effect of spectral denoising and apodization smoothing on the quantitation of whole-brain MRSI data obtained at short TE.MethodsShort-TE MRSI data obtained at 3 T were analyzed with no spectral smoothing, following (i) Gaussian apodization with values of 1, 2, 4, 6, and 8 Hz, and (ii) denoising using principal component analysis (dnPCA) with 3 different values for the number of retained principal components. The mean lobar white matter estimates for four metabolites, signal-to-noise ratio (SNR), spectral linewidth, and confidence intervals were compared to data reconstructed using no smoothing. Additionally, a voxel-wise comparison for N-acetylaspartate quantitation with different smoothing schemes was performed.ResultsSignificant pairwise differences were seen for all Gaussian smoothing methods as compared to no smoothing (p<0.001) in linewidth and metabolite estimates, whereas dnPCA methods showing no statistically significant differences in these measures. Confidence intervals decreased, and SNR increased with increasing levels of apodization smoothing or dnPCA denoising.ConclusionMild Gaussian apodization (≤2 Hz at 3 T) can be applied with minimal (1%) errors in quantitation; however, smoothing values greater than that can significantly affect metabolite quantification. In contrast, mild to moderate dnPCA based denoising provides quantitative results that are consistent with the analysis of unsmoothed data and this method is recommended for spectral denoising.  相似文献   

20.

Aim

The influences on the signal-to-noise ratio (SNR) of Displacement ENcoding with Stimulated Echoes (DENSE) MRI of field strength, receiver coil sensitivity and choice of flip angle strategy have been previously investigated individually. In this study, all of these parameters have been investigated in the same setting, and a mutual comparison of their impact on SNR is presented.

Materials and methods

Ten healthy volunteers were imaged in a 1.5 T and a 3 T MRI system, using standard five- or six-channel cardiac coils as well as 32-channel coils, with four different excitation patterns. Variation of spatial coil sensitivity was assessed by regional SNR analysis.

Results

SNR ranging from 2.8 to 30.5 was found depending on the combination of excitation patterns, coil sensitivity and field strength. The SNR at 3 T was 53±26% higher than at 1.5 T (P<.001), whereas spatial differences of 59±26% were found in the ventricle (P<.001). Thirty-two-channel coils provided 52±29% higher SNR compared to standard five- or six-channel coils (P<.001). A fixed flip angle strategy provided an excess of 50% higher SNR in half of the imaged cardiac cycle compared to a sweeping flip angle strategy, and a single-phase acquisition provided a sixfold increase of SNR compared to a cine acquisition.

Conclusion

The effect of field strength and receiver coil sensitivity influences the SNR with the same order of magnitude, whereas flip angle strategy can have a larger effect on SNR. Thus, careful choice of imaging hardware in combination with adaptation of the acquisition protocol is crucial in order to realize sufficient SNR in DENSE MRI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号