首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A formula was derived for determining the partial molar volume (PMO) of solute at various concentrations and on this basis a method was developed for determining the PMO at infinite dilution. The partial molar volumes of the homologous series of poly(ethylene glycol) with molecular masses 400, 1000, 1500, 2000, 4000, 20000 in aqueous solutions at infinite dilution were determined. Analysis of the calculated and experimental PMO showed that poly(ethylene glycol) molecules exist in dilute solutions in the conformations of elongated helices. In addition, the high-molecular polyethylene glycol molecules include the areas of statistical chaos, which leads to sites unavailable for the solvent molecules. Based on literature data were revealed the values of PMO for highly concentrated solutions of poly(ethylene glycol) PEG 400, PEG 4000, and PEG 6000. Effect of concentration on the structure of PEG solutions was demonstrated. We found that in the temperature range 25–40°C the conformational transitions were not observed.  相似文献   

2.
The interaction of lithium perfluorohexanoate (LiPFHex) with poly(ethylene glycol) (PEG) of different molecular weights (600 Da≤ MW≤20000 Da) was investigated in aqueous solution at 25.00 °C by isothermal titration calorimetry (ITC). The interaction with one of the PEG polymers (MW=8000 Da) was also followed at the same temperature by viscosity and conductivity measurements. The aggregation pattern of this surfactant on the PEG polymeric chain was very similar to that exhibited by the homologous salts of perfluoroheptanoate, perfluorooctanoate and perfluorononanoate ions. The interaction enthalpies with PEG of this class of surfactants are always endothermic and decrease steeply with the decreasing length of the fluorocarbon chain. Experimental data from calorimetry, viscosity and conductivity consistently indicate a very small tendency of PEG polymers to wrap around the small LiPFHex micellar aggregates. The PFHex ion appears to be the shortest member of the series able to interact with a polyoxyethylenic chain. The same CF2 contribution to the Gibbs energy of micellization or aggregation on the polymers was found within the series, indicating a common hydrophobic driving force for the two processes.  相似文献   

3.
A novel Ru‐Zn catalyst was prepared by coprecipitation. The catalyst was characterized by XRF, XRD and TEM. The effects of organic additives on the performance of the Ru‐Zn catalyst for benzene selective hydrogenation to cyclohexene were investigated. The results showed that the catalyst was composed of Ru and Zn in molar ratio of 33.8:1, and the most probable value of the Ru crystallite size in the catalyst was 5.1 nm. The modification of Ru with Zn and the small size effect were the main cause why the catalyst exhibited the high activity and the excellent cyclohexene selectivity. When PEG (polyethylene glycol) was used as an additive, the activity of the catalyst decreased, and the cyclohexene selectivity increased with the increase of the PEG molecular weight. With the addition of PEG‐20000, a cyclohexene selectivity of 78.9% at a benzene conversion of 68.7% and a maximum cyclohexene yield of 61.4% were obtained. With diethanolamine and triethanolamine as additives, cyclohexene yields were as high as 58.9% and 58.2%, respectively.  相似文献   

4.
The effects of steam sterilization and gamma-irradiation on chitosan and thermogelling chitosan-beta-glycerophosphate (GP) solutions containing polyol additives were investigated. The selected polyols were triethylene glycol, glycerol, sorbitol, glucose and poly(ethylene glycol) (PEG). They were incorporated to chitosan solutions prior to sterilization in a proportion ranging from 1 to 5% (w/v). The solutions were characterized with respect to their viscosity, thermogelling properties, compressive stress relaxation behavior and chitosan degradation. All polyols reduced the autoclaving-induced viscosity loss and had a positive impact on the solution thermogelling properties and compressive performance of the gels. Steam sterilization in the presence of glucose resulted in a substantial increase in the solution viscosity and gel strength. This was associated with a strong discoloration suggesting chemical alteration of the system. PEG was the most effective agent in preventing hydrolytic degradation of chitosan chains. Gamma-irradiation strongly decreased the chitosan solution viscosity regardless of the presence of additives, even when sterilization was carried out at -80 degrees C. Moreover, the thermogelling properties were dramatically altered, and thus, gamma-irradiation would not be an appropriate method to sterilize chitosan solutions. In conclusion, polyols are potentially useful additive to maximise the viscoelastic and mechanical properties of chitosan-GP after steam sterilization.  相似文献   

5.
Advantages of interpolymer complexes for use as amphiphilic protectors of nanoparticles during the formation and stabilization of sols are considered. The effects of the ratio of poly(acrylic acid) and poly(ethylene glycol) and the molecular mass of poly(ethylene glycol) on the mean size and size distribution of copper nanoparticles in sols formed via the reduction of divalent copper ions in mixed aqueous solutions of these polymers are investigated. It is shown that sols of metal nanoparticles with small sizes and narrow size distributions are formed even when poly(ethylene glycols) with chain lengths below the “critical” chain length and a small PEG-to-PAA base-molar ratio are used. This is evidence for efficient protection of the formed copper nanoparticles by the interpolymer complex PEG-PAA under conditions of its instability and for self-organization of oligomeric PEG chains in complex macromolecular shields of nanoparticles.  相似文献   

6.
The activation energy related to the electromigration of oligosaccharides can be determined from their measured electrophoretic mobilities at different temperatures. The effects of a viscosity modifier (ethylene glycol) and a polymeric additive (linear polyacrylamide) on the electrophoretic mobility of linear sugar oligomers with α1–4 linked glucose units (maltooligosaccharides) were studied in CE using the activation energy concept. The electrophoretic separations of 8‐aminopyrene‐1,3,6‐trisulfonate‐labeled maltooligosaccharides were monitored by LIF detection in the temperature range of 20–50°C, using either 0–60% ethylene glycol (viscosity modifier) or 0–3% linear polyacrylamide (polymeric additive) containing BGEs. Activation energy curves were constructed based on the slopes of the Arrhenius plots. With the use of linear polyacrylamide additive, solute size‐dependent activation energy variations were found for the maltooligosaccharides with polymerization degrees below and above maltoheptaose (DP 7), probably due to molecular conformation changes and possible matrix interaction effects.  相似文献   

7.
Dynamic light scattering and Cryo-TEM measurements have allowed us to obtain the size and structure of spontaneous aggregates formed by mixtures of Aerosol OT, AOT, and ethylene glycol polymers of different molecular mass. The results presented in this work show that small unilamellar vesicles predominate in pure Aerosol OT solutions and in dilute polymer solutions mixed with AOT. In the latter case, elongated micelles coexist with unilamellar vesicles. When polymer concentration increases above a certain concentration, the small vesicles disappear and the size of the elongated micelles decreases to a radius compatible with spherical micelles. For PEG concentrations above the overlapping ones, spherical micelles coexist with very large aggregates probably formed by large rod like micelles or by superstructures of elongated micelles embedded in a polymer network. This behavior is consistent with theoretical models based in molecular mean-field theory [M. Rovira-Bru, D.H. Thompson, I. Szleifer, Biophys. J. 83 (2002) 2419]. The properties of the different types of aggregates are obtained by fluorescence spectroscopy and electrophoretic mobility measurements.  相似文献   

8.
The neutral polymer-micelle interaction is investigated for various surfactants by viscometry and electrical conductometry. In order to exclude the well-known necklace scenario, we consider aqueous solutions of low molecular weight poly(ethylene glycol) (2-20)x10(3), whose radial size is comparable to or smaller than micelles. The single-tail surfactants consist of anionic, cationic, and nonionic head groups. It is found that the viscosity of the polymer solution may be increased several times by micelles if weak attraction between a polymer segment and a surfactant exists, epsilon相似文献   

9.
Macroscopic and microscopic dissipative structural patterns formed in the course of drying a series of poly (ethylene glycol) (PEG) having molecular weights ranging from 1,000 to 2×106 in aqueous solution have been studied on a cover glass. The broad ring patterns of the hill accumulated with the polymers are formed irrespective of the molecular weights of PEG molecules. The single round hills are formed also in the center in the macroscopic scale, when the molecular weight is large. The characteristic convection flow of the polymers and the interactions among the polymers and substrate are important for the macroscopic pattern formation. Cross-like fractal patterns are observed, especially for the diluted solutions in the microscopic scale. These patterns are determined mainly by the electrostatic and polar interactions between the polymers and/or between the polymer and the substrate in the course of solidification. Interestingly, these microscopic patterns are reflected based on the shape and size of the PEG polymers.  相似文献   

10.
The relationship among the presence of nonsolvent additives, the rheological behavior of spinning solutions and properties of hollow fiber membranes was studied. The additives tested were water, polyvinylpyrrolidone (PVP) and polyethylene glycol (PEG), and the base mixture was polyethersulfone/N-methyl-2-pyrrolidone (PES–NMP). In addition the effect of combining water and PVP or PEG was also studied. Membranes were prepared using a spinneret having two concentric orifices. The internal coagulant used as well as the nonsolvent from the coagulation bath were both water at 28°C and 30°C, respectively. Rheological properties of polymer solutions were evaluated using a rheometer Haake RV 20. Changes on composition of spin-solutions were also evaluated in terms of membrane water permeability, solute rejection and membrane structure observed using scanning electron microscopy (SEM). Experimental results from this work showed that spinning solutions containing any of the three additives behave as Newtonian fluids in the range of shearing rates tested. The addition of water, PVP or PEG to the base PES–NMP solution increased its viscosity and this effect was independent of the type of additive used. A direct relation between viscosity of casting solutions and membrane thickness was found. However, rheological properties (viscosity and normal stress difference) could not be used to explain differences on membrane water flux (MWF) when using different additives at the same concentration. The addition of any of the three additives generally increased MWF. The extent of this increment seemed to be more related to changes on membrane porosity than changes on pore sizes induced by the nature and concentration of the additive used.  相似文献   

11.
To investigate the effect of poly(ethylene glycol) (PEG) 200 on membrane performance, asymmetric polyetherimide (PEI) membranes with a small pore size were prepared by dry/wet-phase inversion from the casting solution containing N-methyl-2-pyrrolidone as a solvent and poly(ethylene glycol) 200 as an additive. Our experiment revealed that the addition of PEG 200 has an influence on the casting solution properties, permeation properties, and resulting membrane structures. Moreover, a drying process also affects the formation of a dense skin layer. Increasing the amount of PEG 200 drastically improved the solute rejection rate. The drying process improved the rejection rate. We also observed the effect of the mixed solvent (water/ethanol) on permeation through the membranes with various pore sizes. In the case of the membrane with a dense skin layer, the solvent permeation showed relationships with solution viscosity, surface tension, and membrane-solvent interaction.  相似文献   

12.
Chitosan-based porous organic-inorganic hybrid membranes supported by microfiltration nylon membranes were prepared, in which gamma-glycidoxypropyltrimethoxysilane (GPTMS) was used as an inorganic source as well as crosslinking reagent. Polyethylene glycol (PEG) with different molecular weight and content was used as imprinting molecule for morphology control. In situ crosslinking of chitosan and simultaneous polymerization of GPTMS in PEG template environment endowed the hybrid membrane with specific characteristics. Distinct hybrid effect between chitosan (CS) and GPTMS was revealed by shifting in X-ray diffraction (XRD) pattern, decomposition in simultaneous thermogravimetry and differential scanning calorimetry (TG/DSC) testing. As manifested by scanning electron microscopy (SEM), the molecular weight and content of PEG had remarkable effect on the resulting surface morphology of the hybrid membrane and a given surface morphology could be obtained by extracting of the imprinted PEG molecular. Among three types of porogen used: PEG 400, PEG 4000 and PEG 20000, only PEG 20000 could result in a porous surface. Moreover, a special porous surface with three-dimensional (3D) hierarchical structure-in-structure pore fashion was obtained when content of PEG 20000 was controlled at 15%. Experimental results also showed that the hybrid membrane had low swelling ratio and high stability in acidic solution. After conveniently coordinated with copper ions, the porous metal chelating hybrid membrane could effectively adsorb the model protein, bovine serum albumin (BSA). As expected, the hybrid membrane imprinted with 15% PEG 20000 had remarkably high copper ion binding and BSA adsorption capacity, which might result from the large surface area, high ligand density and suitable interconnected 3D hierarchical porous surface.  相似文献   

13.
The effect of the molecular mass of polyethylene glycol (PEG) on its adsorption on platinized platinum from aqueous solutions of 0.5 M H2SO4 and 1 M HCl is studied using the methods of open-circuit potential shifts and voltammetry. In sulfuric acid solutions, the PEG adsorption is accompanied by dehydrogenation and hydrogenation processes, which probably involve the terminal groups of polymers. For PEG with the molecular mass of 600–40000, the established stationary surface states turn out to be close to one another. Anions Cl? inhibit the PEG adsorption and electrooxidation. The adsorption behavior of PEG samples studied substantially differs from that of ethylene glycol under comparable conditions.  相似文献   

14.
Complexation of sodium dodecyl sulphate (SDS) with a wide range of molecular weights of poly(ethylene glycol) (PEG) and poly(ethylene oxide) (PEO) has been studied by size exclusion chromatography using aqueous SDS eluent. A multi-angle laser light scattering detector and a differential refractometer were applied to give direct measurement of the molecular weight of complexes without reference to elution volume, since the latter is not a reliable indicator of the complex size. Background light scattering from micellar eluents hampered quantitative size measurements, but was minimal in sub-micellar eluent, where saturated binding was observed for polymers larger than 1000 g mol−1. Multiple peaks and voids were observed in the elution profiles of low molecular weight polymers (up to a mass of 600 g mol−1) in eluent at micellar concentrations. Several sources contribute to this behavior, including micellar chromatographic separation of the PEG oligomers due to their different distribution coefficients between the micellar and water phases. Preliminary results are reported for distribution coefficients of individual oligomers in a 600 g mol−1 PEG sample. Three distinct binding behaviors are observed with increasing degree of polymerization of PEG: no interaction for small glycols, equilibrium partitioning of intermediate oligomers in and out of micelles, and binding of micelles to the larger polymers.  相似文献   

15.
Microporous structure and drug release kinetics of polymeric nanoparticles   总被引:1,自引:0,他引:1  
The aim of the present study was to characterize pegylated nanoparticles (NPs) for their microporosity and study the effect of microporosity on drug release kinetics. Blank and drug-loaded NPs were prepared from three different pegylated polymers, namely, poly(ethylene glycol)1%-graft-poly(D,L)-lactide, poly(ethylene glycol)5%-graft-poly(D,L)-lactide, and the multiblock copolymer (poly(D,L)-lactide-block-poly(ethylene glycol)-block-poly(D,L)-lactide)n. These NPs were characterized for their microporosity using nitrogen adsorption isotherms. NPs of the multiblock copolymer showed the least microporosity and Brunauer-Emmett-Teller (BET) surface area, and that of PEG1%-g-PLA showed the maximum. Based on these results, the structural organization of poly(D,L)-lactide (PLA) and poly(ethylene glycol) (PEG) chains inside the NPs was proposed and was validated with differential scanning calorimetry (DSC) and X-ray photoelectron spectroscopy (XPS) surface analysis. An in vitro drug release study revealed that PEG1%-g-PLA NPs exhibited slower release despite their higher surface area and microporosity. This was attributed to the presence of increased microporosity forming tortuous internal structures, thereby hindering drug diffusion from the matrix. Thus, it was concluded that the microporous structure of NPs, which is affected by the molecular architecture of polymers, determines the release rate of the encapsulated drug.  相似文献   

16.
Ultrasonic absorption and velocity measurements were made on aqueous solutions of poly (ethylene glycol)(PEG)of different molecular weights and concentrations, using a pulse sender-receiver ultrasonic generator, Measurements were obtained at a frequency of 2MHz. , and a temperature of 293 K. The results show a linear increase of the Values of velocity, density and viscosity with increase of molecu lar weight and concentration of PEG. On the contrary, the attenuation values decreased with increase of molecular weight and concentration of PEG. A mathematical equation correlating relaxation amplitude and molecular weight of the polymer is suggested. This was applied to calculate the molecular weights of unknown samples of PEG from their measured relaxation amplitude. The results obtained were in good agreement with those obtained from osmometry.  相似文献   

17.
Large increases in viscosity are not normally observed when insoluble liquid polymers are mixed in the absence of a compatibilizing agent: the liquids separate into bulk phases. Mixing propyl- or allyl-modified oligo(ethylene glycol)(PEG), but not the parent hydroxy-terminated oligo(ethylene glycol), with silicone pre-elastomers led a sharp increase in viscosity that preceded the onset of cure. Only in the case of allyl-modified PEG, however, did a low density, closed cell silicone foam form that, in addition to trapped bubbles, contained dispersed PEG droplets. Rheological studies demonstrate that the origins of the viscosity build lie in the formation, shortly after mixing, of organo-PEG stabilized droplets that act as fillers within the silicone pre-elastomers. Similar viscosity builds were not observed with hydroxy-terminated oligo(ethylene glycol). Although the propyl-modified PEG led initially to large viscosity increases, its ability to stabilize bubbles was comparably limited. The surface activity of the propyl- and allyl-PEG compounds themselves facilitates the formation of a colloidal dispersion within the silicone. However, the key to the observed foamed product is the in situ platinum-catalyzed hydrosilylation of the allyl group, prior to or concomitant with silicone cure, leading to PEG-silicone copolymers that are able to stabilize both dispersed PEG droplets and bubbles.  相似文献   

18.
This study investigates the effect of PEG additive as a pore-former on the structure formation of membranes and their permeation properties connected with the changes of thermodynamic and kinetic properties in phase inversion process. The membranes were prepared by using polysulfone (PSf)/N-methyl-2-pyrrolidone (NMP)/poly(ethylene glycol) (PEG) casting solution and water coagulant. The resulting membranes prepared by changing the molecular weight of PEG additive and the ratio of PEG to NMP were characterized by scanning electron microscope observations, measurements of water flux and PEG rejection. The thermodynamic and kinetic properties of membrane-forming system were studied through coagulation value, light transmittance and viscosity. The correlations between the final membrane structure/permeation properties and thermodynamic/kinetic properties of membrane forming system are discussed extensively.  相似文献   

19.
《Fluid Phase Equilibria》1999,155(2):311-325
The viscosities of aqueous solutions of some poly(ethylene glycol)s (PEG) with nominal molecular weights ranging from 300 to 35 000 g mol−1 were determined up to a concentration of 0.3 g cm−3 at 298.15 K. From these data the intrinsic viscosity and the viscosity average molecular weight of the solute were calculated. The viscosity coefficients B were evaluated and hence the partial molar Gibbs free energy of activation of viscous flow of solute at infinite dilution was calculated and interpreted in terms of the relative effects of solute on the ground and transition state solvent. The hydration numbers were determined and compared with available values in the literature.  相似文献   

20.
实验测定了PEG(M~n=200),PEG(M~n=300),PEG(M~n=400),PDMS(M~w=15000)和PDMS(M~w=20000)在20-90℃温度范围的热压力系数和密度,它们的热压力系数和内压几乎与分子量无关。据此还建立了一个聚合物内压的对应状态模型,它只含一个可调参数,能满意地适用于各种聚合物。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号